A first-principles study of band structure modulation at TiO2 heterogeneous interfaces

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Li , Peng Li , Yixiao Jiang , Xiang Li , Sheng Zhang , Ziyi Sun , Tingting Yao , Chunlin Chen
{"title":"A first-principles study of band structure modulation at TiO2 heterogeneous interfaces","authors":"Shuai Li ,&nbsp;Peng Li ,&nbsp;Yixiao Jiang ,&nbsp;Xiang Li ,&nbsp;Sheng Zhang ,&nbsp;Ziyi Sun ,&nbsp;Tingting Yao ,&nbsp;Chunlin Chen","doi":"10.1016/j.commatsci.2024.113550","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the catalytic efficiency of titanium dioxide (TiO<sub>2</sub>), functioning as a wide-band semiconductor, it is necessary to facilitate the separation of photogenerated charges by modulating its band structure. We constructed (TiO<sub>2</sub>)<sub>n</sub>/LaAlO<sub>3</sub> (n = 4–11) superlattice models and performed systematic first-principles calculations to investigate the modulation of the thickness of TiO<sub>2</sub> on its band structure at interfaces. The results demonstrate that the electrostatic potential differences in the superlattices are higher for the odd layers of TiO<sub>2</sub> than those for the even layers. On the other hand, the band gaps of TiO<sub>2</sub> at interfaces are all lower than that in the bulk TiO<sub>2</sub>. As the thickness is increased from 4 to 11 layers, the band gap of TiO<sub>2</sub> at the Al-O terminated interface shows a gradual increase. In contrast, the band gap of TiO<sub>2</sub> at the La-O terminated interface exhibits fluctuations. These finds demonatrate the thickness and odd–even layers of TiO<sub>2</sub> in TiO<sub>2</sub>/LaAlO<sub>3</sub> superlattices can effectively modulate the built-in electric field and the band gap of TiO<sub>2</sub> at interfaces.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113550"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007717","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the catalytic efficiency of titanium dioxide (TiO2), functioning as a wide-band semiconductor, it is necessary to facilitate the separation of photogenerated charges by modulating its band structure. We constructed (TiO2)n/LaAlO3 (n = 4–11) superlattice models and performed systematic first-principles calculations to investigate the modulation of the thickness of TiO2 on its band structure at interfaces. The results demonstrate that the electrostatic potential differences in the superlattices are higher for the odd layers of TiO2 than those for the even layers. On the other hand, the band gaps of TiO2 at interfaces are all lower than that in the bulk TiO2. As the thickness is increased from 4 to 11 layers, the band gap of TiO2 at the Al-O terminated interface shows a gradual increase. In contrast, the band gap of TiO2 at the La-O terminated interface exhibits fluctuations. These finds demonatrate the thickness and odd–even layers of TiO2 in TiO2/LaAlO3 superlattices can effectively modulate the built-in electric field and the band gap of TiO2 at interfaces.

Abstract Image

二氧化钛异质界面带状结构调制的第一原理研究
为了提高二氧化钛(TiO2)作为宽禁带半导体的催化效率,有必要通过调节其禁带结构来促进光生电荷的分离。我们构建了 (TiO2)n/LaAlO3 (n = 4-11) 超晶格模型,并进行了系统的第一性原理计算,以研究 TiO2 厚度对其界面带结构的调节。结果表明,超晶格中奇数层 TiO2 的静电势差要高于偶数层。另一方面,TiO2 在界面处的带隙均低于块体 TiO2 的带隙。随着厚度从 4 层增加到 11 层,TiO2 在 Al-O 终止界面处的带隙逐渐增大。相比之下,La-O 端接界面上二氧化钛的带隙则出现波动。这些发现表明,TiO2/LaAlO3 超晶格中 TiO2 的厚度和奇偶层可以有效地调节界面处 TiO2 的内置电场和带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信