Zongxiao Zhu , Jialong Wang , Dingfeng Qu , Zhilong Zhao , Hui Tan , Qichun Sun , Tao Zheng
{"title":"Atomic mechanisms of oxidative behavior of ferrochromium alloys by water-oxygen environment","authors":"Zongxiao Zhu , Jialong Wang , Dingfeng Qu , Zhilong Zhao , Hui Tan , Qichun Sun , Tao Zheng","doi":"10.1016/j.commatsci.2024.113567","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of chromium-rich oxide layers on the surface of Fe-Cr alloys significantly impacts their performance at elevated temperatures. Understanding the formation process of these oxide layers at the atomic scale is crucial for further elucidating oxidation behavior, though it presents substantial challenges. In this study, ReaxFF molecular dynamics simulations were used to investigate the oxidation behavior of Fe-Cr alloys in high temperature water vapor and oxygen environments. The results demonstrate that chromium atoms are the primary contributors to the oxidation process, with Cr atoms diffusing to the surface more readily than iron atoms, leading to uneven stress distribution and creating high-stress regions near the Cr atoms. Additionally, hydrogen atoms generated from the breakdown of water molecules infiltrate the alloy matrix, promoting the creation, movement, and clustering of cation and anion vacancies, thereby enhancing oxidation reactions in high-temperature, humid conditions. The study further analyzes electron transfer during single-atom chemical reactions and explores the linear relationship between varying Cr content (10 %–30 %) and oxidation behavior under identical environmental conditions. These findings provide an important theoretical basis for optimizing the performance of Fe-Cr alloys for applications in high temperature environments.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113567"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007882","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of chromium-rich oxide layers on the surface of Fe-Cr alloys significantly impacts their performance at elevated temperatures. Understanding the formation process of these oxide layers at the atomic scale is crucial for further elucidating oxidation behavior, though it presents substantial challenges. In this study, ReaxFF molecular dynamics simulations were used to investigate the oxidation behavior of Fe-Cr alloys in high temperature water vapor and oxygen environments. The results demonstrate that chromium atoms are the primary contributors to the oxidation process, with Cr atoms diffusing to the surface more readily than iron atoms, leading to uneven stress distribution and creating high-stress regions near the Cr atoms. Additionally, hydrogen atoms generated from the breakdown of water molecules infiltrate the alloy matrix, promoting the creation, movement, and clustering of cation and anion vacancies, thereby enhancing oxidation reactions in high-temperature, humid conditions. The study further analyzes electron transfer during single-atom chemical reactions and explores the linear relationship between varying Cr content (10 %–30 %) and oxidation behavior under identical environmental conditions. These findings provide an important theoretical basis for optimizing the performance of Fe-Cr alloys for applications in high temperature environments.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.