From caged robots to high-fives in robotics: Exploring the paradigm shift from human–robot interaction to human–robot teaming in human–machine interfaces
Filippo Sanfilippo , Muhammad Hamza Zafar , Timothy Wiley , Fabio Zambetta
{"title":"From caged robots to high-fives in robotics: Exploring the paradigm shift from human–robot interaction to human–robot teaming in human–machine interfaces","authors":"Filippo Sanfilippo , Muhammad Hamza Zafar , Timothy Wiley , Fabio Zambetta","doi":"10.1016/j.jmsy.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-modal human–machine interfaces have recently undergone a remarkable transformation, progressing from simple human–robot interaction (HRI) to more advanced human–robot collaboration (HRC) and, ultimately, evolving into the concept of human–robot teaming (HRT). The aim of this work is to delineate a progressive path in this evolving transition. A structured, position-oriented review is proposed. Rather than aiming for an exhaustive survey, our objective is to propose a structured approach in a field that has seen diverse and sometimes divergent definitions of HRI/C/T in the literature. This conceptual review seeks to establish a unified and systematic framework for understanding these paradigms, offering clarity and coherence amidst their evolving complexities. We focus on integrating multiple sensory modalities — such as visual, aural, and tactile inputs — within human–machine interfaces. Central to our approach is a running use case of a warehouse workflow, which illustrates key aspects including modelling, control, communication, and technological integration. Additionally, we investigate recent advancements in machine learning and sensing technologies, emphasising robot perception, human intention recognition, and collaborative task engagement. Current challenges and future directions, including ethical considerations, user acceptance, and the need for explainable systems, are also addressed. By providing a structured pathway from HRI to HRT, this work aims to foster a deeper understanding and facilitate further advancements in human–machine interaction paradigms.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"78 ","pages":"Pages 1-25"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002437","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal human–machine interfaces have recently undergone a remarkable transformation, progressing from simple human–robot interaction (HRI) to more advanced human–robot collaboration (HRC) and, ultimately, evolving into the concept of human–robot teaming (HRT). The aim of this work is to delineate a progressive path in this evolving transition. A structured, position-oriented review is proposed. Rather than aiming for an exhaustive survey, our objective is to propose a structured approach in a field that has seen diverse and sometimes divergent definitions of HRI/C/T in the literature. This conceptual review seeks to establish a unified and systematic framework for understanding these paradigms, offering clarity and coherence amidst their evolving complexities. We focus on integrating multiple sensory modalities — such as visual, aural, and tactile inputs — within human–machine interfaces. Central to our approach is a running use case of a warehouse workflow, which illustrates key aspects including modelling, control, communication, and technological integration. Additionally, we investigate recent advancements in machine learning and sensing technologies, emphasising robot perception, human intention recognition, and collaborative task engagement. Current challenges and future directions, including ethical considerations, user acceptance, and the need for explainable systems, are also addressed. By providing a structured pathway from HRI to HRT, this work aims to foster a deeper understanding and facilitate further advancements in human–machine interaction paradigms.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.