Magnetically dead layer in interacting ultrafine NiFe2O4 nanoparticles

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu.V. Knyazev , D.A. Balaev , S.V. Stolyar , A.O. Shokhrina , D.A. Velikanov , A.I. Pankrats , A.M. Vorotynov , A.A. Krasikov , S.A. Skorobogatov , M.N. Volochaev , O.A. Bayukov , R.S. Iskhakov
{"title":"Magnetically dead layer in interacting ultrafine NiFe2O4 nanoparticles","authors":"Yu.V. Knyazev ,&nbsp;D.A. Balaev ,&nbsp;S.V. Stolyar ,&nbsp;A.O. Shokhrina ,&nbsp;D.A. Velikanov ,&nbsp;A.I. Pankrats ,&nbsp;A.M. Vorotynov ,&nbsp;A.A. Krasikov ,&nbsp;S.A. Skorobogatov ,&nbsp;M.N. Volochaev ,&nbsp;O.A. Bayukov ,&nbsp;R.S. Iskhakov","doi":"10.1016/j.jmmm.2024.172675","DOIUrl":null,"url":null,"abstract":"<div><div>The interplay of the magnetically dead layer and structural defects in interacting ultrafine nickel ferrite (NiFe<sub>2</sub>O<sub>4</sub>) nanoparticles (&lt;<em>d</em>&gt; = 4<!--> <!-->nm) have been investigated using transmission electron microscopy, X-ray diffraction, <sup>57</sup>Fe Mössbauer spectrometry, and static (<em>dc</em>) magnetization and dynamic (<em>ac</em>) susceptibility measurements. According to the magnetic measurement data, there are three magnetic subsystems in NiFe<sub>2</sub>O<sub>4</sub> nanoparticles. The first subsystem with the lowest blocking (spin freezing) temperature (<em>T<sub>S</sub></em> = 8 K) involves atomic magnetic moments of magnetically disordered particles with a size of <em>d &lt;</em> 4 nm. The other two subsystems are formed by magnetic moments of the cores of nanoparticles more than 4<!--> <!-->nm in size and by correlated surface spins in nanoparticle clusters. The magnetic moments of the ferrimagnetically ordered cores are blocked at a higher temperature (∼40<!--> <!-->K). It has been shown that the most significant contribution to the energy dissipation is made upon blocking of the correlated nanoparticle surface spins from the magnetically dead layer on the nanoparticle surface. The magnetic measurements have shown that the thickness of this layer is <em>d</em><sub>md</sub> <!-->≈<!--> <!-->1<!--> <!-->nm for a particle with a diameter of &lt; <em>d</em>&gt; = 4<!--> <!-->nm. At the same time, the <sup>57</sup>Fe Mössbauer spectrometry study has revealed a structural disorder penetrating to a depth of up to <em>d</em><sub>cd</sub> <!-->≈<!--> <!-->0.6<!--> <!-->nm in a particle with a diameter of &lt; <em>d</em>&gt; = 4<!--> <!-->nm. This evidence for a faster violation of the magnetic order than in the case of the crystal order upon moving away from the center of a particle to its periphery.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"613 ","pages":"Article 172675"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009661","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interplay of the magnetically dead layer and structural defects in interacting ultrafine nickel ferrite (NiFe2O4) nanoparticles (<d> = 4 nm) have been investigated using transmission electron microscopy, X-ray diffraction, 57Fe Mössbauer spectrometry, and static (dc) magnetization and dynamic (ac) susceptibility measurements. According to the magnetic measurement data, there are three magnetic subsystems in NiFe2O4 nanoparticles. The first subsystem with the lowest blocking (spin freezing) temperature (TS = 8 K) involves atomic magnetic moments of magnetically disordered particles with a size of d < 4 nm. The other two subsystems are formed by magnetic moments of the cores of nanoparticles more than 4 nm in size and by correlated surface spins in nanoparticle clusters. The magnetic moments of the ferrimagnetically ordered cores are blocked at a higher temperature (∼40 K). It has been shown that the most significant contribution to the energy dissipation is made upon blocking of the correlated nanoparticle surface spins from the magnetically dead layer on the nanoparticle surface. The magnetic measurements have shown that the thickness of this layer is dmd  1 nm for a particle with a diameter of < d> = 4 nm. At the same time, the 57Fe Mössbauer spectrometry study has revealed a structural disorder penetrating to a depth of up to dcd  0.6 nm in a particle with a diameter of < d> = 4 nm. This evidence for a faster violation of the magnetic order than in the case of the crystal order upon moving away from the center of a particle to its periphery.

Abstract Image

相互作用的超细 NiFe2O4 纳米粒子中的磁死层
研究人员利用透射电子显微镜、X 射线衍射、57Fe 莫索鲍尔光谱法以及静态(直流)磁化和动态(交流)电感测量,对相互作用的超细镍铁氧体(NiFe2O4)纳米颗粒(<d> = 4 nm)中的磁死层和结构缺陷的相互作用进行了研究。根据磁性测量数据,NiFe2O4 纳米粒子中有三个磁性子系统。第一个子系统的阻滞(自旋冻结)温度最低(TS = 8 K),涉及尺寸为 d < 4 nm 的磁性无序粒子的原子磁矩。另外两个子系统是由尺寸大于 4 纳米的纳米粒子的核心磁矩和纳米粒子团簇中的相关表面自旋形成的。铁磁有序磁芯的磁矩在较高温度(∼40 K)下被阻断。研究表明,相关的纳米粒子表面自旋从纳米粒子表面的磁死层被阻断时,对能量耗散的贡献最大。磁性测量结果表明,对于直径为< d> = 4 nm的粒子,该层的厚度为 dmd ≈ 1 nm。同时,57Fe 莫斯鲍尔光谱研究显示,在直径为 4 纳米的粒子中,结构紊乱的深度可达 dcd ≈ 0.6 纳米。这证明了从粒子中心向外围移动时,磁序的破坏速度比晶体序的破坏速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信