Xionglin He , Qiang Yu , Xinjia Pan , Longze Liu , Zihong Jiang , Wenyao Zhao , Rui Fan
{"title":"Improved beluga whale optimization-based variable universe fuzzy controller for brushless direct current motors of electric tractors","authors":"Xionglin He , Qiang Yu , Xinjia Pan , Longze Liu , Zihong Jiang , Wenyao Zhao , Rui Fan","doi":"10.1016/j.compeleceng.2024.109866","DOIUrl":null,"url":null,"abstract":"<div><div>Brushless direct current (BLDC) motors are widely used in electric tractor powertrains, but torque ripple remains a challenge. Proportional Integral Derivative (PID) controllers are effective in steady-state regulation but struggle with load-induced uncertainties. A new method for tuning sensorless BLDC motors by integrating improved Beluga Whale Optimization (IBWO) with an optimal variable universe fuzzy (VUF) controller is proposed. The enhanced IBWO addresses limitations in solving nonlinear systems, optimizing the VUF controller for precise torque control. A fast non-singular terminal sliding mode observer is also introduced for accurate state estimation. The IBWO adjusts the VUF controller parameters in real time, enabling adaptive torque and speed regulation, thereby reducing overshoot and torque ripple. To validate the proposed approach, a dual closed-loop control model is designed to simulate motor behavior under no load, variable load, and variable speed conditions during plowing operations. The results show that the proposed controller reduces torque ripple by at least 75 % and 60 % compared to PID and fuzzy controllers, respectively, and improves speed regulation time by over 26 %, with steady-state errors of 0.6, 0.7, and 0.12 rpm (rpm) under different conditions.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109866"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007936","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Brushless direct current (BLDC) motors are widely used in electric tractor powertrains, but torque ripple remains a challenge. Proportional Integral Derivative (PID) controllers are effective in steady-state regulation but struggle with load-induced uncertainties. A new method for tuning sensorless BLDC motors by integrating improved Beluga Whale Optimization (IBWO) with an optimal variable universe fuzzy (VUF) controller is proposed. The enhanced IBWO addresses limitations in solving nonlinear systems, optimizing the VUF controller for precise torque control. A fast non-singular terminal sliding mode observer is also introduced for accurate state estimation. The IBWO adjusts the VUF controller parameters in real time, enabling adaptive torque and speed regulation, thereby reducing overshoot and torque ripple. To validate the proposed approach, a dual closed-loop control model is designed to simulate motor behavior under no load, variable load, and variable speed conditions during plowing operations. The results show that the proposed controller reduces torque ripple by at least 75 % and 60 % compared to PID and fuzzy controllers, respectively, and improves speed regulation time by over 26 %, with steady-state errors of 0.6, 0.7, and 0.12 rpm (rpm) under different conditions.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.