Analyzing inverse backward problem in nonlinear integro-differential equation with memory kernel

IF 1.4 Q2 MATHEMATICS, APPLIED
M.J. Huntul
{"title":"Analyzing inverse backward problem in nonlinear integro-differential equation with memory kernel","authors":"M.J. Huntul","doi":"10.1016/j.rinam.2024.100517","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the backward problem related to an integro-differential equation with a general convolutional derivative in time and nonlinear source terms. The existence, uniqueness, and regularity of the mild solution to the proposed problem are established under certain assumptions in a suitable space. The proposed problem is ill-posed in the sense of Hadamard. Moreover, the Fourier truncation method is used to construct a regularized solution. Finally, the convergence rate between the regularized solution and the exact solution is determined.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100517"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the backward problem related to an integro-differential equation with a general convolutional derivative in time and nonlinear source terms. The existence, uniqueness, and regularity of the mild solution to the proposed problem are established under certain assumptions in a suitable space. The proposed problem is ill-posed in the sense of Hadamard. Moreover, the Fourier truncation method is used to construct a regularized solution. Finally, the convergence rate between the regularized solution and the exact solution is determined.
分析带有记忆核的非线性积分微分方程中的逆向问题
本文重点研究了与具有一般卷积导数时间和非线性源项的整微分方程有关的后向问题。在一定的假设条件下,在合适的空间内建立了所提问题的温和解的存在性、唯一性和正则性。所提出的问题是哈达玛德意义上的舛误问题。此外,还使用了傅立叶截断法来构建正则化的解。最后,确定了正则化解和精确解之间的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信