The isoperimetric problem for convex hulls and large deviations rate functionals of random walks

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Vladislav Vysotsky
{"title":"The isoperimetric problem for convex hulls and large deviations rate functionals of random walks","authors":"Vladislav Vysotsky","doi":"10.1016/j.spa.2024.104519","DOIUrl":null,"url":null,"abstract":"<div><div>We study the asymptotic behaviour of the most likely trajectories of a planar random walk that result in large deviations of the area of their convex hull. If the Laplace transform of the increments is finite on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, such a scaled limit trajectory <span><math><mi>h</mi></math></span> solves the inhomogeneous anisotropic isoperimetric problem for the convex hull, where the usual length of <span><math><mi>h</mi></math></span> is replaced by the large deviations rate functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>I</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> and <span><math><mi>I</mi></math></span> is the rate function of the increments. Assuming that the distribution of increments is not supported on a half-plane, we show that the optimal trajectories are convex and satisfy the Euler–Lagrange equation, which we solve explicitly for every <span><math><mi>I</mi></math></span>. The shape of these trajectories resembles the optimizers in the isoperimetric inequality for the Minkowski plane, found by Busemann (1947).</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"180 ","pages":"Article 104519"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002278","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behaviour of the most likely trajectories of a planar random walk that result in large deviations of the area of their convex hull. If the Laplace transform of the increments is finite on R2, such a scaled limit trajectory h solves the inhomogeneous anisotropic isoperimetric problem for the convex hull, where the usual length of h is replaced by the large deviations rate functional 01I(h(t))dt and I is the rate function of the increments. Assuming that the distribution of increments is not supported on a half-plane, we show that the optimal trajectories are convex and satisfy the Euler–Lagrange equation, which we solve explicitly for every I. The shape of these trajectories resembles the optimizers in the isoperimetric inequality for the Minkowski plane, found by Busemann (1947).
凸壳的等周问题和随机游走的大偏差率函数
我们研究了平面随机漫步最可能轨迹的渐近行为,这些轨迹会导致其凸壳面积出现较大偏差。如果增量的拉普拉斯变换在 R2 上是有限的,那么这样的缩放极限轨迹 h 解决了凸壳的非均质各向异性等距问题,其中 h 的通常长度由大偏差率函数 ∫01I(h′(t))dt 代替,I 是增量的率函数。假定增量的分布不在半平面上,我们将证明最优轨迹是凸的,并且满足欧拉-拉格朗日方程,我们对每个 I 都进行了显式求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信