Committee machine learning: A breakthrough in the precise prediction of CO2 storage mass and oil production volumes in unconventional reservoirs

0 ENERGY & FUELS
Shadfar Davoodi , Hung Vo Thanh , David A. Wood , Mohammad Mehrad , Mohammed Al-Shargabid , Valeriy S. Rukavishnikov
{"title":"Committee machine learning: A breakthrough in the precise prediction of CO2 storage mass and oil production volumes in unconventional reservoirs","authors":"Shadfar Davoodi ,&nbsp;Hung Vo Thanh ,&nbsp;David A. Wood ,&nbsp;Mohammad Mehrad ,&nbsp;Mohammed Al-Shargabid ,&nbsp;Valeriy S. Rukavishnikov","doi":"10.1016/j.geoen.2024.213533","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of CO<sub>2</sub> storage mass and cumulative oil production is critical in the context of combining subsurface carbon capture with enhanced oil recovery (CCS-EOR). This study introduces a novel committee machine-learning Gaussian Process Regression (CML-GPR) model, which integrates three well-established machine-learning algorithms—Random Forest (RF), Multi-Layer Extreme Learning Machine (MELM), and Generalized Regression Neural Network (GRNN). The combination of these models leverages the strengths of each algorithm: RF captures nonlinear relationships, MELM enhances computational efficiency, and GRNN provides smooth, generalized predictions. By integrating these complementary techniques, the CML-GPR model demonstrates significant improvements in predictive accuracy over individual models, addressing limitations in their performance. The model predicts CO<sub>2</sub> storage mass and cumulative oil production based on nine key reservoir input variables, including depth, porosity, and CO<sub>2</sub> injection rate, among others. Utilizing a large dataset of 21,193 data points from reservoir simulations, a Mahalanobis distance-based outlier detection method further refines the input data quality. The CML-GPR model achieves root mean square error (RMSE) values of 0.49 million metric tons for CO<sub>2</sub> storage mass and 13.68 million barrels for cumulative oil production, significantly outperforming individual models. The CML-GPR model provides a robust tool for optimizing CO<sub>2</sub> storage capacity and oil recovery, with practical implications for real-world reservoir management, ensuring more efficient and reliable CCS-EOR operations. This study represents a pioneering advancement in predictive modeling, offering valuable insights for optimizing both CO<sub>2</sub> storage and enhanced oil recovery in complex reservoirs.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"245 ","pages":"Article 213533"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024009035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of CO2 storage mass and cumulative oil production is critical in the context of combining subsurface carbon capture with enhanced oil recovery (CCS-EOR). This study introduces a novel committee machine-learning Gaussian Process Regression (CML-GPR) model, which integrates three well-established machine-learning algorithms—Random Forest (RF), Multi-Layer Extreme Learning Machine (MELM), and Generalized Regression Neural Network (GRNN). The combination of these models leverages the strengths of each algorithm: RF captures nonlinear relationships, MELM enhances computational efficiency, and GRNN provides smooth, generalized predictions. By integrating these complementary techniques, the CML-GPR model demonstrates significant improvements in predictive accuracy over individual models, addressing limitations in their performance. The model predicts CO2 storage mass and cumulative oil production based on nine key reservoir input variables, including depth, porosity, and CO2 injection rate, among others. Utilizing a large dataset of 21,193 data points from reservoir simulations, a Mahalanobis distance-based outlier detection method further refines the input data quality. The CML-GPR model achieves root mean square error (RMSE) values of 0.49 million metric tons for CO2 storage mass and 13.68 million barrels for cumulative oil production, significantly outperforming individual models. The CML-GPR model provides a robust tool for optimizing CO2 storage capacity and oil recovery, with practical implications for real-world reservoir management, ensuring more efficient and reliable CCS-EOR operations. This study represents a pioneering advancement in predictive modeling, offering valuable insights for optimizing both CO2 storage and enhanced oil recovery in complex reservoirs.
委员会机器学习:在精确预测非常规储层二氧化碳封存质量和石油产量方面取得突破
在将地下碳捕集与提高石油采收率(CCS-EOR)相结合的背景下,准确预测二氧化碳封存质量和累积石油产量至关重要。本研究介绍了一种新颖的委员会机器学习高斯过程回归(CML-GPR)模型,该模型集成了三种成熟的机器学习算法--随机森林(RF)、多层极端学习机(MELM)和广义回归神经网络(GRNN)。这些模型的组合充分利用了每种算法的优势:RF 可捕捉非线性关系,MELM 可提高计算效率,而 GRNN 则可提供平滑的广义预测。通过整合这些互补技术,CML-GPR 模型在预测准确性方面比单个模型有了显著提高,解决了单个模型在性能方面的局限性。该模型根据九个关键的储层输入变量(包括深度、孔隙度和二氧化碳注入率等)预测二氧化碳储量和累积石油产量。利用由 21193 个储油层模拟数据点组成的大型数据集,基于 Mahalanobis 距离的离群点检测方法进一步提高了输入数据的质量。CML-GPR 模型的二氧化碳封存质量均方根误差 (RMSE) 值为 0.49 百万公吨,累计石油产量均方根误差 (RMSE) 值为 13.68 百万桶,明显优于单个模型。CML-GPR 模型为优化二氧化碳封存容量和石油采收率提供了一个强大的工具,对现实世界的油藏管理具有实际意义,可确保更高效、更可靠的 CCS-EOR 操作。这项研究是预测建模领域的开创性进展,为优化复杂储层的二氧化碳封存和提高石油采收率提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信