Denise J.B. Swanborn , Todd Bond , Jessica L. Kolbusz , Megan E. Cundy , Melanie S. Stott , Elin A. Thomas , Hiroshi Kitazato , Alan J. Jamieson
{"title":"Vertical zonation and environmental drivers of North-West Pacific abyssal and hadal mobile faunal communities","authors":"Denise J.B. Swanborn , Todd Bond , Jessica L. Kolbusz , Megan E. Cundy , Melanie S. Stott , Elin A. Thomas , Hiroshi Kitazato , Alan J. Jamieson","doi":"10.1016/j.dsr.2024.104418","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the composition, vertical zonation and drivers of mobile abyssal and hadal faunal assemblages to understand the environmental patterns underlying biological organisation at lower abyssal and hadal depths. Biological data were analysed from 96 baited lander deployments across five North-West Pacific subduction trenches and one triple trench junction (the Mariana Trench, Philippine Trench, Ryukyu Trench, Japan Trench, Izu-Ogasawara Trench and Boso Triple Junction) and combined with environmental metrics of terrain geomorphology and oceanography at deployment locations. Hierarchical clustering revealed three depth-driven faunal zones, representing an abyssal-hadal transition community (∼5500–6500 m), an upper hadal community (∼7000–7500 m) and a lower hadal community (>8500 m). Clustering results support an abyssal-hadal ecotone >6500 m depth and a further hadal transition ∼8000 m. Environmental factors explained 40.4% of community structure, with depth and location as main contributors to the final model. These factors, through the latter's relationships with surface oceanography and productivity, were also key determinants of relative abundance, diversity, richness and the total relative abundance of dominant faunal groups and families among deployments. Results suggest limited ecological effects of intra-trench environmental variability, and highlight a need for further high-resolution studies sampling a range of environmental conditions and their associated biodiversity within individual hadal features.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"215 ","pages":"Article 104418"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001882","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the composition, vertical zonation and drivers of mobile abyssal and hadal faunal assemblages to understand the environmental patterns underlying biological organisation at lower abyssal and hadal depths. Biological data were analysed from 96 baited lander deployments across five North-West Pacific subduction trenches and one triple trench junction (the Mariana Trench, Philippine Trench, Ryukyu Trench, Japan Trench, Izu-Ogasawara Trench and Boso Triple Junction) and combined with environmental metrics of terrain geomorphology and oceanography at deployment locations. Hierarchical clustering revealed three depth-driven faunal zones, representing an abyssal-hadal transition community (∼5500–6500 m), an upper hadal community (∼7000–7500 m) and a lower hadal community (>8500 m). Clustering results support an abyssal-hadal ecotone >6500 m depth and a further hadal transition ∼8000 m. Environmental factors explained 40.4% of community structure, with depth and location as main contributors to the final model. These factors, through the latter's relationships with surface oceanography and productivity, were also key determinants of relative abundance, diversity, richness and the total relative abundance of dominant faunal groups and families among deployments. Results suggest limited ecological effects of intra-trench environmental variability, and highlight a need for further high-resolution studies sampling a range of environmental conditions and their associated biodiversity within individual hadal features.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.