LX-mixers for QAOA: Optimal mixers restricted to subspaces and the stabilizer formalism

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-11-25 DOI:10.22331/q-2024-11-25-1535
Franz G. Fuchs, Ruben Pariente Bassa
{"title":"LX-mixers for QAOA: Optimal mixers restricted to subspaces and the stabilizer formalism","authors":"Franz G. Fuchs, Ruben Pariente Bassa","doi":"10.22331/q-2024-11-25-1535","DOIUrl":null,"url":null,"abstract":"We present a novel formalism to both understand and construct mixers that preserve a given subspace. The method connects and utilizes the stabilizer formalism that is used in error correcting codes. This can be useful in the setting when the quantum approximate optimization algorithm (QAOA), a popular meta-heuristic for solving combinatorial optimization problems, is applied in the setting where the constraints of the problem lead to a feasible subspace that is large but easy to specify. The proposed method gives a systematic way to construct mixers that are resource efficient in the number of controlled not gates and can be understood as a generalization of the well-known X and XY mixers and a relaxation of the Grover mixer: Given a basis of any subspace, a resource efficient mixer can be constructed that preserves the subspace. The numerical examples provided show a dramatic reduction of CX gates when compared to previous results. We call our approach logical X-Mixer or logical X QAOA ($\\textbf{LX-QAOA}$), since it can be understood as dividing the subspace into code spaces of stabilizers S and consecutively applying logical rotational X gates associated with these code spaces. Overall, we hope that this new perspective can lead to further insight into the development of quantum algorithms.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"64 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-25-1535","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel formalism to both understand and construct mixers that preserve a given subspace. The method connects and utilizes the stabilizer formalism that is used in error correcting codes. This can be useful in the setting when the quantum approximate optimization algorithm (QAOA), a popular meta-heuristic for solving combinatorial optimization problems, is applied in the setting where the constraints of the problem lead to a feasible subspace that is large but easy to specify. The proposed method gives a systematic way to construct mixers that are resource efficient in the number of controlled not gates and can be understood as a generalization of the well-known X and XY mixers and a relaxation of the Grover mixer: Given a basis of any subspace, a resource efficient mixer can be constructed that preserves the subspace. The numerical examples provided show a dramatic reduction of CX gates when compared to previous results. We call our approach logical X-Mixer or logical X QAOA ($\textbf{LX-QAOA}$), since it can be understood as dividing the subspace into code spaces of stabilizers S and consecutively applying logical rotational X gates associated with these code spaces. Overall, we hope that this new perspective can lead to further insight into the development of quantum algorithms.
QAOA 的 LX 混频器:限于子空间的最佳混合器和稳定器形式主义
我们提出了一种新颖的形式主义,用于理解和构建保持给定子空间的混频器。该方法连接并利用了纠错码中使用的稳定器形式主义。量子近似优化算法(QAOA)是一种用于解决组合优化问题的流行元启发式,当问题的约束条件导致一个大但易于指定的可行子空间时,在这种情况下应用量子近似优化算法会非常有用。所提出的方法提供了一种系统化的方法来构建混合器,这种混合器在受控非门的数量上具有资源效率,可以理解为是对著名的 X 和 XY 混合器的概括,也是对格罗弗混合器的一种放松:给定任意子空间的一个基,就能构造出一个保留子空间的资源节约型混频器。所提供的数字示例显示,与之前的结果相比,CX 门的数量大幅减少。我们将这种方法称为逻辑 X-混频器或逻辑 X QAOA($\textbf{LX-QAOA}$),因为它可以理解为将子空间划分为稳定器 S 的代码空间,并连续应用与这些代码空间相关的逻辑旋转 X 门。总之,我们希望这一新视角能为量子算法的发展带来更多启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信