Pablo F. Betancur, Omar E. Solis, Rafael Abargues, Teresa S. Ripolles and Pablo P. Boix
{"title":"Recombination resistance identification through current–voltage curve reconstruction in perovskite solar cells†","authors":"Pablo F. Betancur, Omar E. Solis, Rafael Abargues, Teresa S. Ripolles and Pablo P. Boix","doi":"10.1039/D4CP04143G","DOIUrl":null,"url":null,"abstract":"<p >Perovskite solar cells (PSCs) have demonstrated remarkable advancements in efficiency and stability, yet fully understanding the dynamic processes governing their performance remains a challenge. Impedance spectroscopy (IS) offers a powerful means to characterize PSCs over a wide range of time scales, revealing insights into the internal electronic and ionic processes. However, critical factors like recombination, charge extraction, and transport resistance are often coupled in the same spectra response, affecting their accurate identification. This study explores the use of the <em>j</em>–<em>V</em> curve reconstruction as a tool to identify when recombination governs the impedance response. Our findings show that recombination resistance can be accurately identified, regardless of the underlying recombination mechanism, in the solar cells with unhindered charge extraction. Conversely, in devices with hindered charge extraction, the IS fitting struggles to decouple the transport, extraction and recombination processes, resulting in inaccurate <em>j</em>–<em>V</em> reconstructions. These findings emphasize the importance of accurately identifying the physical processes influencing IS spectra to improve diagnostics and device performance in PSC technologies.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 48","pages":" 29904-29912"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cp/d4cp04143g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp04143g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have demonstrated remarkable advancements in efficiency and stability, yet fully understanding the dynamic processes governing their performance remains a challenge. Impedance spectroscopy (IS) offers a powerful means to characterize PSCs over a wide range of time scales, revealing insights into the internal electronic and ionic processes. However, critical factors like recombination, charge extraction, and transport resistance are often coupled in the same spectra response, affecting their accurate identification. This study explores the use of the j–V curve reconstruction as a tool to identify when recombination governs the impedance response. Our findings show that recombination resistance can be accurately identified, regardless of the underlying recombination mechanism, in the solar cells with unhindered charge extraction. Conversely, in devices with hindered charge extraction, the IS fitting struggles to decouple the transport, extraction and recombination processes, resulting in inaccurate j–V reconstructions. These findings emphasize the importance of accurately identifying the physical processes influencing IS spectra to improve diagnostics and device performance in PSC technologies.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.