Rika Marui, Hayato Maeda, Kan Hatakeyama-Sato, Yuta Nabae, Teruaki Hayakawa
{"title":"Ortho-, Meta-, versus Para-Substituted Mesogens Inducing Higher-Order Structures for Highly Thermal-Conductive Cured Epoxy Resins","authors":"Rika Marui, Hayato Maeda, Kan Hatakeyama-Sato, Yuta Nabae, Teruaki Hayakawa","doi":"10.1021/acs.macromol.4c00506","DOIUrl":null,"url":null,"abstract":"Mesogenic monomers are beneficial, but few studies have investigated the effects of the molecular structure of liquid crystalline epoxy monomers on the higher-order structure and thermal conductivity of their cured resins to obtain highly thermally conductive and insulating epoxy resins. This study focused on the symmetry of the mesogenic part. Four different epoxy monomers were copolymerized with 1,4-phenylenediamine. Cured resins form a nematic-like network. Molecules array more orderly in epoxy resin with the most symmetric epoxy monomer. The thermal conductivities of epoxy resin prepared with ortho-, meta-, and para-substituted epoxy monomer were 0.26, 0.31, and 0.44 W m<sup>–1</sup> K<sup>–1</sup>, respectively. Epoxy resin with the most symmetric epoxy monomer showed over 1.7 times as high as epoxy resin with low symmetric epoxy monomer. It is clarified that the symmetricity of the primary structure of epoxy monomer is an essential factor for the higher-order structure and thermal conductivity of cured epoxy resin.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"256 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c00506","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mesogenic monomers are beneficial, but few studies have investigated the effects of the molecular structure of liquid crystalline epoxy monomers on the higher-order structure and thermal conductivity of their cured resins to obtain highly thermally conductive and insulating epoxy resins. This study focused on the symmetry of the mesogenic part. Four different epoxy monomers were copolymerized with 1,4-phenylenediamine. Cured resins form a nematic-like network. Molecules array more orderly in epoxy resin with the most symmetric epoxy monomer. The thermal conductivities of epoxy resin prepared with ortho-, meta-, and para-substituted epoxy monomer were 0.26, 0.31, and 0.44 W m–1 K–1, respectively. Epoxy resin with the most symmetric epoxy monomer showed over 1.7 times as high as epoxy resin with low symmetric epoxy monomer. It is clarified that the symmetricity of the primary structure of epoxy monomer is an essential factor for the higher-order structure and thermal conductivity of cured epoxy resin.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.