Enhancing fatigue resistance of Cr-Mn-Fe-Co-Ni multi-principal element alloys by varying stacking fault energy and sigma (σ)-phase assisted grain-size reduction
{"title":"Enhancing fatigue resistance of Cr-Mn-Fe-Co-Ni multi-principal element alloys by varying stacking fault energy and sigma (σ)-phase assisted grain-size reduction","authors":"Shubham Sisodia , Guillaume Laplanche , Maik Rajkowski , Ankur Chauhan","doi":"10.1016/j.ijfatigue.2024.108704","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates two key aspects of the low cycle fatigue (LCF) behavior of alloys from the Cr-Mn-Fe-Co-Ni system at room temperature: (1) the influence of stacking fault energy (SFE) in single-phase face-centered cubic (FCC) alloys and (2) a grain size reduction triggered by the precipitation of a small amount of σ-phase. The first effect is investigated using model alloys (Cr<sub>26</sub>Mn<sub>20</sub>Fe<sub>20</sub>Co<sub>20</sub>Ni<sub>14</sub> and Cr<sub>14</sub>Mn<sub>20</sub>Fe<sub>20</sub>Co<sub>20</sub>Ni<sub>26</sub> in at.%, grain size: ∼60 µm), which have distinct SFEs at room temperature. A reduction in SFE from 69 to 23 mJ/m<sup>2</sup> results in a 10 to 20 % increase in tensile/compressive peak stresses, i.e., cyclic strength, across all examined strain amplitudes (±0.3 %, ±0.5 %, and ±0.7 %) while maintaining comparable fatigue lives. Despite its higher cyclic strength, the low-SFE alloy exhibits delayed, and less evolved dislocation substructures than the other alloy. In both single-phase alloys, fatigue cracks originated from the surface reliefs, surface-exposed coherent annealing twin boundaries, and occasionally from high-angle grain boundaries. However, the crack propagation rate was slower in the low-SFE alloy, contributing to its superior fatigue resistance. By aging the low-SFE Cr<sub>26</sub>Mn<sub>20</sub>Fe<sub>20</sub>Co<sub>20</sub>Ni<sub>14</sub> alloy differently, we could induce the precipitation of ∼5 % σ-phase during recrystallization, which strongly reduced the FCC grain size to ∼5 µm. With this microstructure, the cyclic strength increased by 50–65 % and remained more stable during fatigue testing while maintaining a comparable life. The σ-precipitates were found to deflect and arrest fatigue cracks, while extensive deformation twinning around cracks complements slip activity and reduces crack propagation rate. Overall, the σ-phase-assisted grain size reduction is 3 to 5 times more effective in improving cyclic strength than SFE reduction.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108704"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates two key aspects of the low cycle fatigue (LCF) behavior of alloys from the Cr-Mn-Fe-Co-Ni system at room temperature: (1) the influence of stacking fault energy (SFE) in single-phase face-centered cubic (FCC) alloys and (2) a grain size reduction triggered by the precipitation of a small amount of σ-phase. The first effect is investigated using model alloys (Cr26Mn20Fe20Co20Ni14 and Cr14Mn20Fe20Co20Ni26 in at.%, grain size: ∼60 µm), which have distinct SFEs at room temperature. A reduction in SFE from 69 to 23 mJ/m2 results in a 10 to 20 % increase in tensile/compressive peak stresses, i.e., cyclic strength, across all examined strain amplitudes (±0.3 %, ±0.5 %, and ±0.7 %) while maintaining comparable fatigue lives. Despite its higher cyclic strength, the low-SFE alloy exhibits delayed, and less evolved dislocation substructures than the other alloy. In both single-phase alloys, fatigue cracks originated from the surface reliefs, surface-exposed coherent annealing twin boundaries, and occasionally from high-angle grain boundaries. However, the crack propagation rate was slower in the low-SFE alloy, contributing to its superior fatigue resistance. By aging the low-SFE Cr26Mn20Fe20Co20Ni14 alloy differently, we could induce the precipitation of ∼5 % σ-phase during recrystallization, which strongly reduced the FCC grain size to ∼5 µm. With this microstructure, the cyclic strength increased by 50–65 % and remained more stable during fatigue testing while maintaining a comparable life. The σ-precipitates were found to deflect and arrest fatigue cracks, while extensive deformation twinning around cracks complements slip activity and reduces crack propagation rate. Overall, the σ-phase-assisted grain size reduction is 3 to 5 times more effective in improving cyclic strength than SFE reduction.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.