K. Dinesh , Barun Bharadwaj Dash , R. Kannan , Neeta Paulose , G.V. Prasad Reddy , Hariharan Krishnaswamy , S. Sankaran
{"title":"Effect of temperature on fatigue behavior and deformation mechanisms of nickel-based superalloy SU-263","authors":"K. Dinesh , Barun Bharadwaj Dash , R. Kannan , Neeta Paulose , G.V. Prasad Reddy , Hariharan Krishnaswamy , S. Sankaran","doi":"10.1016/j.ijfatigue.2024.108721","DOIUrl":null,"url":null,"abstract":"<div><div>The LCF behavior of SU-263 was investigated at various temperatures (1073, 1123, and 1173 K) and strain amplitudes of ± 0.4 to 0.8% at a constant strain rate of 3 × 10<sup>-3</sup> s<sup>−1</sup>. The alloy displayed initial hardening followed by extensive cyclic softening until failure. It is observed that the presence of dislocation networks absorbs mobile dislocation, and the shearing of γ′ precipitates were responsible for cyclic softening at 1073 and 1123 K, whereas dissolution of γ′ precipitate and dislocation annihilation were responsible for cyclic softening at 1173 K. At elevated temperatures, the LCF behavior is significantly influenced by time-dependent processes such as dynamic strain aging (DSA), and oxidation. The occurrence of DSA manifests in the form of serrated plastic flow in stress–strain hysteresis loops, reduced half-life plastic strain amplitude, and increased cyclic work hardening. The alloy exhibits linear behavior in the Coffin-Manson (C-M) plot at 1073 and 1173 K. However, the C-M plot shows bi-linear behavior at 1123 K with the corresponding shift in the deformation mechanism at ± 0.5% strain amplitude. This study focuses on understanding the effects of temperature on fatigue behavior and the associated deformation mechanisms by using characterization techniques, such as scanning and transmission electron microscopy.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108721"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005802","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The LCF behavior of SU-263 was investigated at various temperatures (1073, 1123, and 1173 K) and strain amplitudes of ± 0.4 to 0.8% at a constant strain rate of 3 × 10-3 s−1. The alloy displayed initial hardening followed by extensive cyclic softening until failure. It is observed that the presence of dislocation networks absorbs mobile dislocation, and the shearing of γ′ precipitates were responsible for cyclic softening at 1073 and 1123 K, whereas dissolution of γ′ precipitate and dislocation annihilation were responsible for cyclic softening at 1173 K. At elevated temperatures, the LCF behavior is significantly influenced by time-dependent processes such as dynamic strain aging (DSA), and oxidation. The occurrence of DSA manifests in the form of serrated plastic flow in stress–strain hysteresis loops, reduced half-life plastic strain amplitude, and increased cyclic work hardening. The alloy exhibits linear behavior in the Coffin-Manson (C-M) plot at 1073 and 1173 K. However, the C-M plot shows bi-linear behavior at 1123 K with the corresponding shift in the deformation mechanism at ± 0.5% strain amplitude. This study focuses on understanding the effects of temperature on fatigue behavior and the associated deformation mechanisms by using characterization techniques, such as scanning and transmission electron microscopy.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.