Experimental evaluation of multiaxial test-tailored specifications based on Fatigue Damage multi-Spectra

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
M. Aimé , A. Banvillet , L. Khalij , E. Pagnacco , E. Chatelet , R. Dufour
{"title":"Experimental evaluation of multiaxial test-tailored specifications based on Fatigue Damage multi-Spectra","authors":"M. Aimé ,&nbsp;A. Banvillet ,&nbsp;L. Khalij ,&nbsp;E. Pagnacco ,&nbsp;E. Chatelet ,&nbsp;R. Dufour","doi":"10.1016/j.ijfatigue.2024.108702","DOIUrl":null,"url":null,"abstract":"<div><div>In the industrial sector, laboratory tests are frequently performed to evaluate the durability of structures under mechanical loads. These tests typically involve sequentially applied uniaxial loads, even though operational conditions are often multiaxial. To address this inconsistency, a new frequency-domain approach has been developed to generate test-tailored specifications for multiaxial vibration based on the Fatigue Damage multi-Spectrum (FDmS). This paper analyzes this procedure through experimental trials, showing the accuracy of the generated multiaxial test-tailored specifications, as well as its ability to synthesize and generate cross-correlations.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108702"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005619","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the industrial sector, laboratory tests are frequently performed to evaluate the durability of structures under mechanical loads. These tests typically involve sequentially applied uniaxial loads, even though operational conditions are often multiaxial. To address this inconsistency, a new frequency-domain approach has been developed to generate test-tailored specifications for multiaxial vibration based on the Fatigue Damage multi-Spectrum (FDmS). This paper analyzes this procedure through experimental trials, showing the accuracy of the generated multiaxial test-tailored specifications, as well as its ability to synthesize and generate cross-correlations.
基于疲劳损伤多光谱的多轴测试定制规范的实验评估
在工业领域,经常要进行实验室测试,以评估结构在机械负载下的耐久性。这些测试通常涉及连续施加的单轴载荷,尽管运行条件通常是多轴的。为了解决这种不一致性,我们开发了一种新的频域方法,以疲劳损伤多频谱(FDmS)为基础,生成适合测试的多轴振动规范。本文通过试验分析了这一程序,展示了生成的多轴测试定制规范的准确性,以及其合成和生成交叉相关性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信