Rou Li , Hao Wang , Changqing Miao , Zhijie Yuan , Zongxing Zhang
{"title":"Three-dimensional fatigue crack initiation and propagation behavior of stress-corroded steel wires for bridge cables","authors":"Rou Li , Hao Wang , Changqing Miao , Zhijie Yuan , Zongxing Zhang","doi":"10.1016/j.ijfatigue.2024.108717","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue test was carried out to investigate the fracture morphology and fatigue life of stress-corroded steel wires. The influence of stress corrosion degree on the initial value of crack propagation and fracture toughness of steel wires was explored. The theoretical method of crack initiation and propagation life of corroded steel wires based on CM-EIFS (Corrosion Modified Equivalent Initial Flaw Size) model was proposed. Finally, the variation law of crack tip stress was studied through the numerical method considering the corrosion surface, and the general expression of shape factor of crack tip and the reduction factor of fracture toughness of corroded steel wires were given. The results showed that the fatigue life of steel wires had a good nonlinear decrease trend with the stress corrosion degree increase. The crack initiation is often located in the surface corrosion pit, and the initiation zone was related to the intermetallic compound containing Fe and Mn. It was necessary to consider the reduction of fracture toughness for steel wires with high degree of stress corrosion. When the stress corrosion degree reached 24 %, the fracture toughness of steel wire was only 50.86 MPa·m<sup>0.5</sup>, which was 52 % lower than that of the non-corrosion ones. The higher the stress corrosion degree and stress concentration factor, the lower the proportion of crack initiation life. When the stress concentration reached a certain degree, the total fatigue life was mainly composed of crack propagation life. The depth-width ratio of corrosion pit and the residual thickness of corroded steel wires were the key factors affecting the stress intensity factor at the crack tip. The three-dimensional crack propagation results obtained by XFEM (Extended Finite Element Method) based on the corrosion surface were highly consistent with the test results.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108717"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005760","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fatigue test was carried out to investigate the fracture morphology and fatigue life of stress-corroded steel wires. The influence of stress corrosion degree on the initial value of crack propagation and fracture toughness of steel wires was explored. The theoretical method of crack initiation and propagation life of corroded steel wires based on CM-EIFS (Corrosion Modified Equivalent Initial Flaw Size) model was proposed. Finally, the variation law of crack tip stress was studied through the numerical method considering the corrosion surface, and the general expression of shape factor of crack tip and the reduction factor of fracture toughness of corroded steel wires were given. The results showed that the fatigue life of steel wires had a good nonlinear decrease trend with the stress corrosion degree increase. The crack initiation is often located in the surface corrosion pit, and the initiation zone was related to the intermetallic compound containing Fe and Mn. It was necessary to consider the reduction of fracture toughness for steel wires with high degree of stress corrosion. When the stress corrosion degree reached 24 %, the fracture toughness of steel wire was only 50.86 MPa·m0.5, which was 52 % lower than that of the non-corrosion ones. The higher the stress corrosion degree and stress concentration factor, the lower the proportion of crack initiation life. When the stress concentration reached a certain degree, the total fatigue life was mainly composed of crack propagation life. The depth-width ratio of corrosion pit and the residual thickness of corroded steel wires were the key factors affecting the stress intensity factor at the crack tip. The three-dimensional crack propagation results obtained by XFEM (Extended Finite Element Method) based on the corrosion surface were highly consistent with the test results.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.