Genetic association analysis and frequency of NUDT15*3 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease in a large Dutch cohort.
Maarten J Deenen, Anouk J van Noordenburg, Joëlle Bouwens-Bijsterveld, Maarten A van Dijk, Janneke M Stapelbroek, Luc J J Derijks, Lennard P L Gilissen, Birgit A L M Deiman
{"title":"Genetic association analysis and frequency of NUDT15*3 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease in a large Dutch cohort.","authors":"Maarten J Deenen, Anouk J van Noordenburg, Joëlle Bouwens-Bijsterveld, Maarten A van Dijk, Janneke M Stapelbroek, Luc J J Derijks, Lennard P L Gilissen, Birgit A L M Deiman","doi":"10.1038/s41397-024-00358-7","DOIUrl":null,"url":null,"abstract":"<p><p>Thiopurine drugs are cornerstone treatment for patients with inflammatory bowel disease (IBD). The most common adverse drug reaction is thiopurine-induced myelosuppression (TIM), that may partly be explained by the genetic polymorphism NUDT15*3. The aim of this retrospective study was to determine the NUDT15*3 polymorphism frequency and its association with TIM in an IBD patient population in the Netherlands. DNA from patients previously genotyped for TPMT was genotyped for NUDT15*3. In IBD patients treated with thiopurines association tests with TIM were conducted. Out of 988 included patients, 13 (1.3%) were heterozygous for NUDT15*3. Of all patients, 606 had IBD and received thiopurine treatment. In these patients, 8/606 (1.3%) were heterozygous polymorphic for NUDT15*3 of which 50.0% developed TIM compared to 2.3% in the wild type patients (p < 0.001). The study results show a clinically relevant prevalence of NUDT15*3 in the Dutch patient population. Its strong association with TIM suggests pre-therapeutic genotyping potentially clinically utile.</p>","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"24 6","pages":"39"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41397-024-00358-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Thiopurine drugs are cornerstone treatment for patients with inflammatory bowel disease (IBD). The most common adverse drug reaction is thiopurine-induced myelosuppression (TIM), that may partly be explained by the genetic polymorphism NUDT15*3. The aim of this retrospective study was to determine the NUDT15*3 polymorphism frequency and its association with TIM in an IBD patient population in the Netherlands. DNA from patients previously genotyped for TPMT was genotyped for NUDT15*3. In IBD patients treated with thiopurines association tests with TIM were conducted. Out of 988 included patients, 13 (1.3%) were heterozygous for NUDT15*3. Of all patients, 606 had IBD and received thiopurine treatment. In these patients, 8/606 (1.3%) were heterozygous polymorphic for NUDT15*3 of which 50.0% developed TIM compared to 2.3% in the wild type patients (p < 0.001). The study results show a clinically relevant prevalence of NUDT15*3 in the Dutch patient population. Its strong association with TIM suggests pre-therapeutic genotyping potentially clinically utile.
期刊介绍:
The Pharmacogenomics Journal is a print and electronic journal, which is dedicated to the rapid publication of original research on pharmacogenomics and its clinical applications.
Key areas of coverage include:
Personalized medicine
Effects of genetic variability on drug toxicity and efficacy
Identification and functional characterization of polymorphisms relevant to drug action
Pharmacodynamic and pharmacokinetic variations and drug efficacy
Integration of new developments in the genome project and proteomics into clinical medicine, pharmacology, and therapeutics
Clinical applications of genomic science
Identification of novel genomic targets for drug development
Potential benefits of pharmacogenomics.