A Degenerate KAM Theorem for Partial Differential Equations with Unbounded Perturbations

IF 0.8 3区 数学 Q2 MATHEMATICS
Mei Na Gao, Jian Jun Liu
{"title":"A Degenerate KAM Theorem for Partial Differential Equations with Unbounded Perturbations","authors":"Mei Na Gao,&nbsp;Jian Jun Liu","doi":"10.1007/s10114-024-3159-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an infinite dimensional KAM theorem with unbounded perturbations and double normal frequencies is established under qualitative non-degenerate conditions. This is an extension of the degenerate KAM theorem with bounded perturbations by Bambusi, Berti, Magistrelli, and us. As applications, for derivative nonlinear Schrödinger equation with periodic boundary conditions, quasi-periodic solutions around constant solutions are obtained.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2719 - 2734"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3159-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an infinite dimensional KAM theorem with unbounded perturbations and double normal frequencies is established under qualitative non-degenerate conditions. This is an extension of the degenerate KAM theorem with bounded perturbations by Bambusi, Berti, Magistrelli, and us. As applications, for derivative nonlinear Schrödinger equation with periodic boundary conditions, quasi-periodic solutions around constant solutions are obtained.

无界扰动偏微分方程的退化 KAM 定理
本文在定性非退化条件下,建立了具有无界扰动和双法频的无限维 KAM 定理。这是 Bambusi、Berti、Magistrelli 和我们对有界扰动的退化 KAM 定理的扩展。作为应用,对于具有周期性边界条件的导数非线性薛定谔方程,可以得到恒定解周围的准周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信