L2 Schrödinger Maximal Estimates Associated with Finite Type Phases in ℝ2

IF 0.8 3区 数学 Q2 MATHEMATICS
Zhuo Ran Li, Jun Yan Zhao, Teng Fei Zhao
{"title":"L2 Schrödinger Maximal Estimates Associated with Finite Type Phases in ℝ2","authors":"Zhuo Ran Li,&nbsp;Jun Yan Zhao,&nbsp;Teng Fei Zhao","doi":"10.1007/s10114-024-3401-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish Schrödinger maximal estimates associated with the finite type phase </p><div><div><span>$$\\phi(\\xi_{1},\\xi_{2}):=\\xi_{1}^{m}+\\xi_{2}^{m},$$</span></div></div><p> where <i>m</i> ≥ 4 is an even number. Following [12], we prove an <i>L</i><sup>2</sup> fractal restriction estimate associated with the surface </p><div><div><span>$$\\{(\\xi_{1},\\xi_{2},\\phi(\\xi_{1},\\xi_{2}))\\ :\\ (\\xi_{1},\\xi_{2})\\in[0,1]^{2}\\}$$</span></div></div><p> as the main result, which also gives results on the average Fourier decay of fractal measures associated with these surfaces. The key ingredients of the proof include the rescaling technique from [16], Bourgain–Demeter’s <i>ℓ</i><sup>2</sup> decoupling inequality, the reduction of dimension arguments from [17] and induction on scales. We notice that our Theorem 1.1 has some similarities with the results in [8]. However, their results do not cover ours. Their arguments depend on the positive definiteness of the Hessian matrix of the phase function, while our phase functions are degenerate.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2809 - 2839"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3401-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish Schrödinger maximal estimates associated with the finite type phase

$$\phi(\xi_{1},\xi_{2}):=\xi_{1}^{m}+\xi_{2}^{m},$$

where m ≥ 4 is an even number. Following [12], we prove an L2 fractal restriction estimate associated with the surface

$$\{(\xi_{1},\xi_{2},\phi(\xi_{1},\xi_{2}))\ :\ (\xi_{1},\xi_{2})\in[0,1]^{2}\}$$

as the main result, which also gives results on the average Fourier decay of fractal measures associated with these surfaces. The key ingredients of the proof include the rescaling technique from [16], Bourgain–Demeter’s 2 decoupling inequality, the reduction of dimension arguments from [17] and induction on scales. We notice that our Theorem 1.1 has some similarities with the results in [8]. However, their results do not cover ours. Their arguments depend on the positive definiteness of the Hessian matrix of the phase function, while our phase functions are degenerate.

与ℝ2 中有限类型相位相关的 L2 薛定谔最大估计值
在本文中,我们建立了与有限类型相 $$\phi(\xi_{1},\xi_{2}):=\xi_{1}^{m}+\xi_{2}^{m}, $$$ 相关的薛定谔最大估计,其中 m ≥ 4 是偶数。继 [12] 之后,我们证明了与曲面 $$\{(\xi_{1},\xi_{2},\phi(\xi_{1},\xi_{2}))\ 相关的 L2 分形限制估计值:\ (\xi_{1},\xi_{2})\in[0,1]^{2}}$$ 作为主要结果,它还给出了与这些曲面相关的分形度量的平均傅里叶衰减结果。证明的关键要素包括[16]中的重定标技术、布尔甘-德梅特的 ℓ2 解耦不等式、[17]中的维度还原论证以及尺度归纳。我们注意到定理 1.1 与 [8] 的结果有一些相似之处。然而,他们的结果并不包括我们的结果。他们的论证依赖于相位函数 Hessian 矩阵的正定性,而我们的相位函数是退化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信