On the Centralizers of Rescaling Separating Differentiable Vector Fields

IF 0.8 3区 数学 Q2 MATHEMATICS
Bo Han, Xiao Wen
{"title":"On the Centralizers of Rescaling Separating Differentiable Vector Fields","authors":"Bo Han,&nbsp;Xiao Wen","doi":"10.1007/s10114-024-3170-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a new concept of expansiveness, similar to the separating property. Specifically, we consider a compact Riemannian manifold <i>M</i> without boundary and a <i>C</i><sup>1</sup> vector field <i>X</i> on <i>M</i>, which generates a flow <i>φ</i><sub><i>t</i></sub> on <i>M</i>. We say that <i>X is rescaling separating</i> on a compact invariant set Λ of <i>X</i> if there is a constant <i>δ</i> &gt; 0 such that, for any <i>x</i>, <i>y</i> ∈ Λ, if <i>d</i>(<i>φ</i><sub><i>t</i></sub>(<i>x</i>), <i>φ</i><sub><i>t</i></sub>(<i>y</i>)) ≤ <i>δ</i>∥<i>X</i> (<i>φ</i><sub><i>t</i></sub>(<i>x</i>))∥ for all <i>t</i> ∈ ℝ, then <i>y</i> ∈ Orb(<i>x</i>). We prove that if <i>X</i> is rescaling separating on Λ and every singularity of <i>X</i> in Λ is hyperbolic, then any <i>C</i><sup>1</sup> vector field <i>Y</i>, whose flow commutes with <i>φ</i><sub><i>t</i></sub> on Λ, must be collinear to <i>X</i> on Λ. As applications of this result, we show that the centralizer of a rescaling separating <i>C</i><sup>1</sup> vector field without nonhyperbolic singularity is quasi-trivial. We also proved that there is an open and dense set <span>\\({\\cal U} \\subset {{\\cal X}^{1}}(M)\\)</span> such that for any star vector field <span>\\(X \\in {\\cal U}\\)</span>, the centralizer of <i>X</i> is collinear to <i>X</i> on the chain recurrent set of <i>X</i>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2671 - 2683"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3170-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new concept of expansiveness, similar to the separating property. Specifically, we consider a compact Riemannian manifold M without boundary and a C1 vector field X on M, which generates a flow φt on M. We say that X is rescaling separating on a compact invariant set Λ of X if there is a constant δ > 0 such that, for any x, y ∈ Λ, if d(φt(x), φt(y)) ≤ δX (φt(x))∥ for all t ∈ ℝ, then y ∈ Orb(x). We prove that if X is rescaling separating on Λ and every singularity of X in Λ is hyperbolic, then any C1 vector field Y, whose flow commutes with φt on Λ, must be collinear to X on Λ. As applications of this result, we show that the centralizer of a rescaling separating C1 vector field without nonhyperbolic singularity is quasi-trivial. We also proved that there is an open and dense set \({\cal U} \subset {{\cal X}^{1}}(M)\) such that for any star vector field \(X \in {\cal U}\), the centralizer of X is collinear to X on the chain recurrent set of X.

论重缩分微分矢量场的中心点
在本文中,我们引入了一个类似于分离性质的新概念--广延性。具体来说,我们考虑一个无边界的紧凑黎曼流形 M 和 M 上的 C1 向量场 X,它在 M 上产生一个流 φt。如果存在一个常数 δ >0,使得对于任意 x,y∈Λ,对于所有 t∈ ℝ ,如果 d(φt(x), φt(y)) ≤ δ∥X (φt(x))∥ ,那么 y∈ Orb(x),我们就说 X 在 X 的紧凑不变集Λ上是重定向分离的。我们证明,如果 X 在Λ 上是重定向分离的,并且 X 在Λ 上的每个奇点都是双曲的,那么任何 C1 向量场 Y(其流在Λ 上与φt 共线)在Λ 上一定与 X 共线。作为这一结果的应用,我们证明了无非双曲奇点的重定标分离 C1 向量场的中心子是准三维的。我们还证明了存在一个开放且密集的集({\cal U}\子集{{\cal X}^{1}}(M)\),这样对于任何星向量场\(X \in {\cal U}\), X的中心子在X的链循环集上与X是共线的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信