A Framework to Design Efficent Blockchain-Based Decentralized Federated Learning Architectures

Yannis Formery;Leo Mendiboure;Jonathan Villain;Virginie Deniau;Christophe Gransart
{"title":"A Framework to Design Efficent Blockchain-Based Decentralized Federated Learning Architectures","authors":"Yannis Formery;Leo Mendiboure;Jonathan Villain;Virginie Deniau;Christophe Gransart","doi":"10.1109/OJCS.2024.3488512","DOIUrl":null,"url":null,"abstract":"Distributed machine learning, and Decentralized Federated Learning in particular, is emerging as an effective solution to cope with the ever-increasing amount of data and the need to process it faster and more reliably. It enables machine learning models to be trained without centralizing user data, which improves data confidentiality and optimizes performance compared with centralized approaches. However, scaling up such systems can have limitations in terms of data and model traceability and security. To address this limitation, the integration of Blockchain has been proposed, forming a global system leveraging Blockchain, called Blockchain Based Decentralized Federated Learning (BDFL), and taking advantage of the benefits of this technology, namely transparency, immutability and decentralization. For the time being, few studies have sought to characterize these BDFL systems, although it seems that they can be broken down into a set of layers (blockchain, interconnection of DFL nodes, client selection, data transmission, consensus management) that could have a major impact on the operation of the BDFL as a whole. The aim of this article is therefore to respond to this limitation by highlighting the different layers existing in the architecture of a BDFL system and the solutions proposed in the literature that can be integrated to optimise both the performance and the security of the system. This could ultimately lead to the design of more secure and efficient architectures with greater resilience to attacks and architectural changes.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"5 ","pages":"705-723"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738377","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10738377/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed machine learning, and Decentralized Federated Learning in particular, is emerging as an effective solution to cope with the ever-increasing amount of data and the need to process it faster and more reliably. It enables machine learning models to be trained without centralizing user data, which improves data confidentiality and optimizes performance compared with centralized approaches. However, scaling up such systems can have limitations in terms of data and model traceability and security. To address this limitation, the integration of Blockchain has been proposed, forming a global system leveraging Blockchain, called Blockchain Based Decentralized Federated Learning (BDFL), and taking advantage of the benefits of this technology, namely transparency, immutability and decentralization. For the time being, few studies have sought to characterize these BDFL systems, although it seems that they can be broken down into a set of layers (blockchain, interconnection of DFL nodes, client selection, data transmission, consensus management) that could have a major impact on the operation of the BDFL as a whole. The aim of this article is therefore to respond to this limitation by highlighting the different layers existing in the architecture of a BDFL system and the solutions proposed in the literature that can be integrated to optimise both the performance and the security of the system. This could ultimately lead to the design of more secure and efficient architectures with greater resilience to attacks and architectural changes.
设计基于区块链的高效去中心化联合学习架构的框架
分布式机器学习,特别是分散式联合学习,正在成为应对日益增长的数据量以及更快、更可靠地处理这些数据的需求的有效解决方案。与集中式方法相比,它能在不集中用户数据的情况下训练机器学习模型,从而提高数据保密性并优化性能。然而,扩大此类系统的规模可能会在数据和模型的可追溯性和安全性方面受到限制。为解决这一局限性,有人提出整合区块链,形成一个利用区块链的全球系统,称为 "基于区块链的去中心化联合学习(BDFL)",并利用该技术的优势,即透明度、不变性和去中心化。目前,很少有研究试图描述这些 BDFL 系统的特征,尽管它们似乎可以被分解成一系列层(区块链、DFL 节点互连、客户端选择、数据传输、共识管理),这些层可能会对整个 BDFL 的运行产生重大影响。因此,本文旨在通过强调 BDFL 系统架构中存在的不同层级,以及文献中提出的可集成以优化系统性能和安全性的解决方案,来应对这一局限性。这最终会导致设计出更安全、更高效、更能抵御攻击和架构变化的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信