Quantitative Scales for Haliphilicity of Metals: Tailoring the Halide Affinity of Alkaline Earth Metals to Synthesize Chalcogenide Perovskite BaMS3 (M = Zr, and Hf) and Cu2BaSnS4 Compounds
Shubhanshu Agarwal, Kiruba Catherine Vincent and Rakesh Agrawal*,
{"title":"Quantitative Scales for Haliphilicity of Metals: Tailoring the Halide Affinity of Alkaline Earth Metals to Synthesize Chalcogenide Perovskite BaMS3 (M = Zr, and Hf) and Cu2BaSnS4 Compounds","authors":"Shubhanshu Agarwal, Kiruba Catherine Vincent and Rakesh Agrawal*, ","doi":"10.1021/acsaem.4c0220510.1021/acsaem.4c02205","DOIUrl":null,"url":null,"abstract":"<p >Chalcogenide semiconductors, such as BaMS<sub>3</sub> (M = Zr and Hf) and Cu<sub>2</sub>BaSnS<sub>4</sub>, have attracted growing interest due to the constituent elements’ abundance and reported promising properties. However, the synthesis of these alkaline earth-containing chalcogenides from commonly available metal halides has generally been unsuccessful and has traditionally relied on expensive organometallic precursors or vacuum processing techniques, which hinder widespread research on these materials. In this study, we conducted thermodynamic calculations and developed chloriphilicity and iodiphilicity scales for various metals, leveraging their relative affinities for chlorine and iodine, respectively, compared to their corresponding metal sulfides. Utilizing these scales, we introduced a K<sub>2</sub>S–H<sub>2</sub>S system to address the affinity of alkaline earth metals for chlorine and iodine. This approach enables the synthesis of these intriguing chalcogenide materials through solution-based methods using metal chloride and metal iodide precursors. This system demonstrates remarkable efficacy for both sulfide and selenide semiconductors.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 22","pages":"10584–10595 10584–10595"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02205","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcogenide semiconductors, such as BaMS3 (M = Zr and Hf) and Cu2BaSnS4, have attracted growing interest due to the constituent elements’ abundance and reported promising properties. However, the synthesis of these alkaline earth-containing chalcogenides from commonly available metal halides has generally been unsuccessful and has traditionally relied on expensive organometallic precursors or vacuum processing techniques, which hinder widespread research on these materials. In this study, we conducted thermodynamic calculations and developed chloriphilicity and iodiphilicity scales for various metals, leveraging their relative affinities for chlorine and iodine, respectively, compared to their corresponding metal sulfides. Utilizing these scales, we introduced a K2S–H2S system to address the affinity of alkaline earth metals for chlorine and iodine. This approach enables the synthesis of these intriguing chalcogenide materials through solution-based methods using metal chloride and metal iodide precursors. This system demonstrates remarkable efficacy for both sulfide and selenide semiconductors.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.