Three-dimensional cranial suture morphometric changes in young rats during normal growth

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2024-11-20 DOI:10.1016/j.bone.2024.117336
Tsolmonbaatar Khurelbaatar , Leah Fisher , Lindsey Westover , Michael R. Doschak , Dan L. Romanyk
{"title":"Three-dimensional cranial suture morphometric changes in young rats during normal growth","authors":"Tsolmonbaatar Khurelbaatar ,&nbsp;Leah Fisher ,&nbsp;Lindsey Westover ,&nbsp;Michael R. Doschak ,&nbsp;Dan L. Romanyk","doi":"10.1016/j.bone.2024.117336","DOIUrl":null,"url":null,"abstract":"<div><div>The age-based morphometric changes of cranial sutures are not well established, particularly in a quantitative manner. Most prior work utilized planar reslicing approaches to analyze sutures and the quantitative measurements of suture morphometry were limited to a short segment not following the true skull shape. The present study aimed to investigate the age-based morphometric changes of the coronal suture during normal growth of young rats using a novel curved-reslicing approach.</div><div>Longitudinal in vivo micro-computed tomography (μCT) scans were completed at five time points (7, 9, 11, 16 and 21 weeks of age) during normal growth for 12 Sprague-Dawley rats (six female, six male). Curved-reslicing was performed on μCT slices to generate 11 equidistant cross-sectional images that covered the middle 90 % of skull thickness and the entire length of the coronal suture. The suture linear interdigitation index (LII) and width were measured using a marching algorithm.</div><div>The average coronal suture LII increased by 15.3 % while the width decreased by 53.5 % at 21 weeks compared to 7 weeks of age, and repeated measures one-way analysis of variance with post-hoc multiple comparisons with Bonferroni adjustment revealed that these differences are statistically significant (<em>p</em> &lt; 0.01). Linear mixed-effect models (LMM) were created for the prediction of rat coronal suture LII and width based on age, relative location through the skull thickness and initial morphometric measurements at the inner surface of the skull. When random effects are considered, the LMM was able to explain up to 97 % and 78 % of variations of suture LII and width, respectively. The presented study has established a novel curved-reslicing method to obtain quantitative 3D information surrounding cranial sutures and demonstrated strong predictive capabilities for suture morphometric changes with age. Future studies considering craniofacial sutures abnormalities will benefit from the presented work through novel methods of studying 3D quantitative morphometry.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"191 ","pages":"Article 117336"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224003259","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The age-based morphometric changes of cranial sutures are not well established, particularly in a quantitative manner. Most prior work utilized planar reslicing approaches to analyze sutures and the quantitative measurements of suture morphometry were limited to a short segment not following the true skull shape. The present study aimed to investigate the age-based morphometric changes of the coronal suture during normal growth of young rats using a novel curved-reslicing approach.
Longitudinal in vivo micro-computed tomography (μCT) scans were completed at five time points (7, 9, 11, 16 and 21 weeks of age) during normal growth for 12 Sprague-Dawley rats (six female, six male). Curved-reslicing was performed on μCT slices to generate 11 equidistant cross-sectional images that covered the middle 90 % of skull thickness and the entire length of the coronal suture. The suture linear interdigitation index (LII) and width were measured using a marching algorithm.
The average coronal suture LII increased by 15.3 % while the width decreased by 53.5 % at 21 weeks compared to 7 weeks of age, and repeated measures one-way analysis of variance with post-hoc multiple comparisons with Bonferroni adjustment revealed that these differences are statistically significant (p < 0.01). Linear mixed-effect models (LMM) were created for the prediction of rat coronal suture LII and width based on age, relative location through the skull thickness and initial morphometric measurements at the inner surface of the skull. When random effects are considered, the LMM was able to explain up to 97 % and 78 % of variations of suture LII and width, respectively. The presented study has established a novel curved-reslicing method to obtain quantitative 3D information surrounding cranial sutures and demonstrated strong predictive capabilities for suture morphometric changes with age. Future studies considering craniofacial sutures abnormalities will benefit from the presented work through novel methods of studying 3D quantitative morphometry.
正常生长期间幼鼠颅缝形态的三维变化
以年龄为基础的颅骨缝形态变化尚未得到很好的确定,特别是在定量方面。之前的研究大多采用平面重切片的方法来分析颅缝,而对颅缝形态的定量测量仅限于不符合真实颅骨形状的一小段。本研究旨在使用一种新颖的曲面切片方法,研究年轻大鼠正常生长过程中冠状缝的年龄形态变化。在 12 只 Sprague-Dawley 大鼠(6 只雌性,6 只雄性)正常生长期间的五个时间点(7、9、11、16 和 21 周龄)完成了纵向活体微型计算机断层扫描(μCT)。对μCT切片进行曲线切片,生成11个等距的横截面图像,覆盖头骨厚度的中间90%和冠状缝的整个长度。采用行进算法测量了缝线线性交错指数(LII)和宽度。与 7 周龄相比,21 周龄时的平均冠状缝 LII 增加了 15.3%,而宽度则减少了 53.5%。经 Bonferroni 调整的重复测量单因素方差分析和事后多重比较显示,这些差异具有显著的统计学意义(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信