TIMP1 regulates ferroptosis in osteoblasts by inhibiting TFRC ubiquitination: an in vitro and in vivo study.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bo Peng, Zhiwei Feng, Ao Yang, Jinmin Liu, Jinwen He, Lihu Xu, Cong Tian, Xiaoyun Sheng, Yaobin Wang, Rongjin Chen, Xingwen Wang, Xiaojun Ren, Bin Geng, Yayi Xia
{"title":"TIMP1 regulates ferroptosis in osteoblasts by inhibiting TFRC ubiquitination: an in vitro and in vivo study.","authors":"Bo Peng, Zhiwei Feng, Ao Yang, Jinmin Liu, Jinwen He, Lihu Xu, Cong Tian, Xiaoyun Sheng, Yaobin Wang, Rongjin Chen, Xingwen Wang, Xiaojun Ren, Bin Geng, Yayi Xia","doi":"10.1186/s10020-024-01000-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In clinical practice, alterations in the internal environment of type 2 diabetes can significantly affect bone quality. While the increased risk of fractures among diabetic patients is well-established, the precise mechanisms by which hyperglycemia influences bone quality remain largely unclear.</p><p><strong>Methods: </strong>Western blotting, immunohistochemistry (IHC), and micro-CT were used to examine ferroptosis-related protein expression and bone morphology changes in the bone tissues of type 2 diabetic mice. The CCK8 assay determined the optimal conditions for inducing ferroptosis in osteoblasts by high glucose and high fat (HGHF). Ferroptosis phenotypes in osteoblasts were analyzed using flow cytometry, Western blotting, and two-photon laser confocal microscopy. Transcriptomic sequencing of the control and HGHF groups, followed by bioinformatic analysis, identified and validated key genes. TIMP1 was knocked down in osteoblasts to assess its impact on ferroptosis, while TFRC expression was inhibited and activated to verify the role of TIMP1 in regulating ferroptosis through TFRC. The therapeutic effect of TIMP1 inhibition on osteoporosis was evaluated in a type 2 diabetic mouse model.</p><p><strong>Results: </strong>The expression of TIMP1 is increased in type 2 diabetic osteoporosis. In vitro, TIMP1 knockout inhibited ferroptosis in osteoblasts induced by high glucose and high fat (HGHF). However, overexpression of TFRC reversed the ferroptosis inhibition caused by TIMP1 knockout. Suppression of TIMP1 expression alleviated the progression of osteoporosis in type 2 diabetic mice. Mechanistic studies suggest that TIMP1 regulates HGHF-induced ferroptosis in osteoblasts through TFRC.</p><p><strong>Conclusion: </strong>This study demonstrates that TIMP1 expression is increased during type 2 diabetic osteoporosis and that TIMP1 promotes ferroptosis in osteoblasts by regulating TFRC. These findings suggest that TIMP1 is a promising novel therapeutic target for type 2 diabetic osteoporosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"226"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-01000-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In clinical practice, alterations in the internal environment of type 2 diabetes can significantly affect bone quality. While the increased risk of fractures among diabetic patients is well-established, the precise mechanisms by which hyperglycemia influences bone quality remain largely unclear.

Methods: Western blotting, immunohistochemistry (IHC), and micro-CT were used to examine ferroptosis-related protein expression and bone morphology changes in the bone tissues of type 2 diabetic mice. The CCK8 assay determined the optimal conditions for inducing ferroptosis in osteoblasts by high glucose and high fat (HGHF). Ferroptosis phenotypes in osteoblasts were analyzed using flow cytometry, Western blotting, and two-photon laser confocal microscopy. Transcriptomic sequencing of the control and HGHF groups, followed by bioinformatic analysis, identified and validated key genes. TIMP1 was knocked down in osteoblasts to assess its impact on ferroptosis, while TFRC expression was inhibited and activated to verify the role of TIMP1 in regulating ferroptosis through TFRC. The therapeutic effect of TIMP1 inhibition on osteoporosis was evaluated in a type 2 diabetic mouse model.

Results: The expression of TIMP1 is increased in type 2 diabetic osteoporosis. In vitro, TIMP1 knockout inhibited ferroptosis in osteoblasts induced by high glucose and high fat (HGHF). However, overexpression of TFRC reversed the ferroptosis inhibition caused by TIMP1 knockout. Suppression of TIMP1 expression alleviated the progression of osteoporosis in type 2 diabetic mice. Mechanistic studies suggest that TIMP1 regulates HGHF-induced ferroptosis in osteoblasts through TFRC.

Conclusion: This study demonstrates that TIMP1 expression is increased during type 2 diabetic osteoporosis and that TIMP1 promotes ferroptosis in osteoblasts by regulating TFRC. These findings suggest that TIMP1 is a promising novel therapeutic target for type 2 diabetic osteoporosis.

TIMP1 通过抑制 TFRC 泛素化调节成骨细胞的铁变态反应:一项体外和体内研究。
背景:在临床实践中,2 型糖尿病患者体内环境的改变会严重影响骨质。虽然糖尿病患者骨折风险增加已是公认的事实,但高血糖影响骨质的确切机制在很大程度上仍不清楚:方法:采用 Western 印迹、免疫组化(IHC)和显微 CT 技术检测 2 型糖尿病小鼠骨组织中与铁蛋白沉积相关的蛋白表达和骨形态变化。CCK8测定确定了高糖高脂(HGHF)诱导成骨细胞铁变态反应的最佳条件。使用流式细胞术、Western印迹法和双光子激光共聚焦显微镜分析了成骨细胞的铁变态表型。对对照组和 HGHF 组进行转录组测序,然后进行生物信息学分析,确定并验证了关键基因。在成骨细胞中敲除TIMP1以评估其对铁凋亡的影响,同时抑制和激活TFRC的表达以验证TIMP1通过TFRC调控铁凋亡的作用。在 2 型糖尿病小鼠模型中评估了抑制 TIMP1 对骨质疏松症的治疗效果:结果:在 2 型糖尿病骨质疏松症中,TIMP1 的表达增加。在体外,TIMP1 基因敲除可抑制高糖高脂(HGHF)诱导的成骨细胞铁突变。然而,过表达 TFRC 可逆转 TIMP1 基因敲除引起的铁析出抑制。抑制 TIMP1 的表达可缓解 2 型糖尿病小鼠骨质疏松症的进展。机理研究表明,TIMP1通过TFRC调节HGHF诱导的成骨细胞铁变态反应:本研究表明,TIMP1 的表达在 2 型糖尿病骨质疏松症期间增加,并且 TIMP1 通过调节 TFRC 促进成骨细胞的铁析出。这些发现表明,TIMP1 是治疗 2 型糖尿病骨质疏松症的一个很有前景的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信