Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zeqiang Lin, Jiayu Zhuang, Lixia He, Siyuan Zhu, Weiguo Kong, Wenju Lu, Zili Zhang
{"title":"Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases.","authors":"Zeqiang Lin, Jiayu Zhuang, Lixia He, Siyuan Zhu, Weiguo Kong, Wenju Lu, Zili Zhang","doi":"10.1186/s10020-024-00961-1","DOIUrl":null,"url":null,"abstract":"<p><p>Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"225"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00961-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.

探索 Smad5:为深入了解常见呼吸道疾病的病理生物学铺平道路的综述。
Smad5(small mothers against decapentaplegic 5)蛋白是受体调控的Smad家族蛋白,主要以磷酸化形式参与骨形态发生蛋白(BMP)信号通路。本文将对 Smad5 进行详细综述,重点介绍其基因特征、蛋白结构和亚细胞定位特性。我们还将探讨相关的信号通路以及 Smad5 在呼吸系统疾病(包括慢性阻塞性肺疾病(COPD)、支气管哮喘、肺动脉高压(PAH)、肺癌和特发性肺纤维化(IPF))中的作用机制。此外,综述还将涉及增殖、分化、凋亡、抗纤维化和线粒体功能代谢等方面。此外,综述还将涉及与上述主题相关的增殖、分化、凋亡、抗纤维化和线粒体功能代谢等方面。大量研究表明,Smad5 在呼吸系统疾病的发病机制中可能扮演着独特而重要的角色。然而,在以往的研究中,Smad5 主要用于广泛确定 BMP 信号通路的激活情况,其自身的功能并未受到重视。值得注意的是,与 Smad1 和 Smad8 不同,Smad5 具有明显的核-胞质分布特征。当细胞内 pH 值(pHi)发生变化时,它可以在细胞核-细胞质之间发生显著的穿梭,在经典的 BMP 信号通路和非 BMP 信号通路中都发挥着重要作用。鉴于 Smad5 可随理化性质的变化而在细胞内移动,其细胞定位可能在呼吸系统疾病的发生发展中起着至关重要的作用。本文将探讨其分布特征可能是疾病研究中容易被忽视和未充分考虑的一个重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信