Lei Cao, Binlong Yu, Yilin Dong, Tianyu Liu, Jie Li
{"title":"Convolution spatial-temporal attention network for EEG emotion recognition.","authors":"Lei Cao, Binlong Yu, Yilin Dong, Tianyu Liu, Jie Li","doi":"10.1088/1361-6579/ad9661","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, emotion recognition using Electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between Convolutional Neural Network (CNN) and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad9661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, emotion recognition using Electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between Convolutional Neural Network (CNN) and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.