{"title":"Oxygen control in cell culture - your cells may not be experiencing what you think!","authors":"Zachary J Rogers, Darragh Flood, Cormac T Taylor","doi":"10.1016/j.freeradbiomed.2024.11.036","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen (O<sub>2</sub>)-controlled cell culture has been pivotal in studying mammalian mechanisms of O<sub>2</sub> sensing, regulation, and utilization. We posit, however, that O<sub>2</sub>-controlled cell culture is paradoxically not controlling O<sub>2</sub>. There is overwhelming evidence that the pericellular O<sub>2</sub> is lower than the surrounding gas phase due to cellular O<sub>2</sub> consumption. Standard hypoxic cell culture is at high risk of inducing pericellular anoxia. We discuss the implications of poor O<sub>2</sub> control for cellular O<sub>2</sub> regulation mechanisms, bioenergetics, and redox signaling. We also highlight the evidence of frequent under-oxygenation in standard (i.e., normoxic) cell culture. This issue has been largely overlooked because strategies to control pericellular O<sub>2</sub> have been lacking. Here, we propose a framework to control pericellular O<sub>2</sub> based on our recent investigation into the nature of the gas/pericellular O<sub>2</sub> gradient. Implementing this framework into standard practice will unlock quantitative O<sub>2</sub> control in vitro, improving our ability to understand the role of O<sub>2</sub> in biology.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.11.036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen (O2)-controlled cell culture has been pivotal in studying mammalian mechanisms of O2 sensing, regulation, and utilization. We posit, however, that O2-controlled cell culture is paradoxically not controlling O2. There is overwhelming evidence that the pericellular O2 is lower than the surrounding gas phase due to cellular O2 consumption. Standard hypoxic cell culture is at high risk of inducing pericellular anoxia. We discuss the implications of poor O2 control for cellular O2 regulation mechanisms, bioenergetics, and redox signaling. We also highlight the evidence of frequent under-oxygenation in standard (i.e., normoxic) cell culture. This issue has been largely overlooked because strategies to control pericellular O2 have been lacking. Here, we propose a framework to control pericellular O2 based on our recent investigation into the nature of the gas/pericellular O2 gradient. Implementing this framework into standard practice will unlock quantitative O2 control in vitro, improving our ability to understand the role of O2 in biology.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.