Rohit B. Meshram, Kanai L. Sahoo, Ganapati D. Yadav, Kumudini V. Marathe
{"title":"Production and recycling of blast furnace slag: A life cycle assessment approach in India","authors":"Rohit B. Meshram, Kanai L. Sahoo, Ganapati D. Yadav, Kumudini V. Marathe","doi":"10.1002/ep.14503","DOIUrl":null,"url":null,"abstract":"<p>This article investigated the cradle-to-gate environmental impact of granulated blast furnace slag (GBFS) produced in the steel industry and replacement of blast furnace (BF) slag (50%) in place of clinker in Portland slag cement using GaBi software (Indian extension database). In case of GBFS production, maximum burden on the environment is due to BF slag production and the amount of electricity consumed (161 MJ/ton) during the granulation process. The influence of electricity sources on GBFS production was studied via scenario analysis. For investigation, solar and thermal electricity mixes were considered in 50:50 and 75:25 ratios. For the 75:25 ratios, the abiotic depletion potential (fossil), acidification, eutrophication, global warming, and human toxicity potential show a decreasing trend of approximately 45%, 49%, 48%, 46%, and 41%, respectively. The scenario analysis of BF slag transportation (from 100 to 750 km) demonstrates a negative impact due to fuel. The results quantitatively confirm that the addition of GBFS can lower the overall impact for construction and steel industries.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14503","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigated the cradle-to-gate environmental impact of granulated blast furnace slag (GBFS) produced in the steel industry and replacement of blast furnace (BF) slag (50%) in place of clinker in Portland slag cement using GaBi software (Indian extension database). In case of GBFS production, maximum burden on the environment is due to BF slag production and the amount of electricity consumed (161 MJ/ton) during the granulation process. The influence of electricity sources on GBFS production was studied via scenario analysis. For investigation, solar and thermal electricity mixes were considered in 50:50 and 75:25 ratios. For the 75:25 ratios, the abiotic depletion potential (fossil), acidification, eutrophication, global warming, and human toxicity potential show a decreasing trend of approximately 45%, 49%, 48%, 46%, and 41%, respectively. The scenario analysis of BF slag transportation (from 100 to 750 km) demonstrates a negative impact due to fuel. The results quantitatively confirm that the addition of GBFS can lower the overall impact for construction and steel industries.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.