Low Regularity Solutions for the General Quasilinear Ultrahyperbolic Schrödinger Equation

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Ben Pineau, Mitchell A. Taylor
{"title":"Low Regularity Solutions for the General Quasilinear Ultrahyperbolic Schrödinger Equation","authors":"Ben Pineau,&nbsp;Mitchell A. Taylor","doi":"10.1007/s00205-024-02072-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel method for establishing large data local well-posedness in low regularity Sobolev spaces for general quasilinear Schrödinger equations with non-degenerate and nontrapping metrics. Our result represents a definitive improvement over the landmark results of Kenig, Ponce, Rolvung and Vega (Kenig et al. in Adv Math 196:373–486, 2005; Carlos et al. in Adv Math 206:402–433, 2006; Carlos et al. in Invent Math 134:489–545, 1998; Carlos et al. in Invent Math 158:343–388, 2004), as it weakens the regularity and decay assumptions to the same scale of spaces considered by Marzuola, Metcalfe and Tataru in (Jeremy et al. in Arch Ration Mech Anal 242:1119-1175, 2021), but removes the uniform ellipticity assumption on the metric from their result. Our method has the additional benefit of being relatively simple but also very robust. In particular, it only relies on the use of pseudodifferential calculus for classical symbols.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02072-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel method for establishing large data local well-posedness in low regularity Sobolev spaces for general quasilinear Schrödinger equations with non-degenerate and nontrapping metrics. Our result represents a definitive improvement over the landmark results of Kenig, Ponce, Rolvung and Vega (Kenig et al. in Adv Math 196:373–486, 2005; Carlos et al. in Adv Math 206:402–433, 2006; Carlos et al. in Invent Math 134:489–545, 1998; Carlos et al. in Invent Math 158:343–388, 2004), as it weakens the regularity and decay assumptions to the same scale of spaces considered by Marzuola, Metcalfe and Tataru in (Jeremy et al. in Arch Ration Mech Anal 242:1119-1175, 2021), but removes the uniform ellipticity assumption on the metric from their result. Our method has the additional benefit of being relatively simple but also very robust. In particular, it only relies on the use of pseudodifferential calculus for classical symbols.

一般准线性超双曲薛定谔方程的低正则性解决方案
我们提出了一种在低正则性 Sobolev 空间中为具有非退化和非捕获度量的一般准线性薛定谔方程建立大数据局部好求的新方法。我们的结果代表了对 Kenig、Ponce、Rolvung 和 Vega 的里程碑式结果的明确改进(Kenig 等人,发表于 Adv Math 196:373-486, 2005 年;Carlos 等人,发表于 Adv Math 206:402-433, 2006 年;Carlos 等人,发表于 Invent Math 134:489-545, 1998 年;Carlos 等人,发表于 Invent Math 158:402-433, 2006 年)。杰里米等人在 Arch Ration Mech Anal 242:1119-1175, 2021 中)所考虑的空间尺度相同,但从他们的结果中删除了对度量的均匀椭圆性假设。我们的方法还有一个好处,就是相对简单,而且非常稳健。特别是,它只依赖于经典符号的伪微分计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信