{"title":"Cacophony: An Improved Contrastive Audio-Text Model","authors":"Ge Zhu;Jordan Darefsky;Zhiyao Duan","doi":"10.1109/TASLP.2024.3485170","DOIUrl":null,"url":null,"abstract":"Despite recent advancements, audio-text models still lag behind their image-text counterparts in scale and performance. In this paper, we propose to improve both the data scale and the training procedure of audio-text contrastive models. Specifically, we craft a large-scale audio-text dataset containing 13,000 hours of text-labeled audio, using pretrained language models to process noisy text descriptions and automatic captioning to obtain text descriptions for unlabeled audio samples. We first train on audio-only data with a masked autoencoder (MAE) objective, which allows us to benefit from the scalability of unlabeled audio datasets. We then train a contrastive model with an auxiliary captioning objective with the audio encoder initialized from the MAE model. Our final model, which we name Cacophony, achieves state-of-the-art performance on audio-text retrieval tasks, and exhibits competitive results on the HEAR benchmark and other downstream tasks such as zero-shot classification.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4867-4879"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10731549/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite recent advancements, audio-text models still lag behind their image-text counterparts in scale and performance. In this paper, we propose to improve both the data scale and the training procedure of audio-text contrastive models. Specifically, we craft a large-scale audio-text dataset containing 13,000 hours of text-labeled audio, using pretrained language models to process noisy text descriptions and automatic captioning to obtain text descriptions for unlabeled audio samples. We first train on audio-only data with a masked autoencoder (MAE) objective, which allows us to benefit from the scalability of unlabeled audio datasets. We then train a contrastive model with an auxiliary captioning objective with the audio encoder initialized from the MAE model. Our final model, which we name Cacophony, achieves state-of-the-art performance on audio-text retrieval tasks, and exhibits competitive results on the HEAR benchmark and other downstream tasks such as zero-shot classification.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.