ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling

IF 4.1 2区 计算机科学 Q1 ACOUSTICS
Zhanbiao Zhu;Peijie Huang;Haojing Huang;Yuhong Xu;Piyuan Lin;Leyi Lao;Shaoshen Chen;Haojie Xie;Shangjian Yin
{"title":"ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling","authors":"Zhanbiao Zhu;Peijie Huang;Haojing Huang;Yuhong Xu;Piyuan Lin;Leyi Lao;Shaoshen Chen;Haojie Xie;Shangjian Yin","doi":"10.1109/TASLP.2024.3492800","DOIUrl":null,"url":null,"abstract":"Multi-intent spoken language understanding (SLU) that can handle multiple intents in an utterance has attracted increasing attention. Previous studies treat the slot filling task as a token-level sequence labeling task, which results in a lack of entity-related information. In our paper, we propose an \n<bold>E</b>\nntity-\n<bold>L</b>\nevel \n<bold>S</b>\nlot \n<bold>F</b>\nilling (ELSF) framework for joint multiple intent detection and slot filling. In our framework, two entity-oriented auxiliary tasks, entity boundary detection and entity type assignment, are introduced as the regularization to capture the entity boundary and the context of type, respectively. Besides, to better utilize the entity interaction, we design an effective entity-level coordination mechanism for modeling the interaction in both entity-entity and intent-entity relationships. Experiments on five datasets demonstrate the effectiveness and generalizability of our ELSF.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4880-4893"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747289/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-intent spoken language understanding (SLU) that can handle multiple intents in an utterance has attracted increasing attention. Previous studies treat the slot filling task as a token-level sequence labeling task, which results in a lack of entity-related information. In our paper, we propose an E ntity- L evel S lot F illing (ELSF) framework for joint multiple intent detection and slot filling. In our framework, two entity-oriented auxiliary tasks, entity boundary detection and entity type assignment, are introduced as the regularization to capture the entity boundary and the context of type, respectively. Besides, to better utilize the entity interaction, we design an effective entity-level coordination mechanism for modeling the interaction in both entity-entity and intent-entity relationships. Experiments on five datasets demonstrate the effectiveness and generalizability of our ELSF.
ELSF:用于联合多重意图检测和空隙填充的实体级空隙填充框架
能够处理语篇中多个意图的多意图口语理解(SLU)已引起越来越多的关注。以往的研究将槽填充任务视为标记级序列标注任务,从而导致缺乏与实体相关的信息。在本文中,我们提出了一个实体级槽填充(Entity-Level Slot Filling,ELSF)框架,用于联合多意图检测和槽填充。在我们的框架中,引入了两个面向实体的辅助任务--实体边界检测和实体类型分配--作为正则化,分别捕捉实体边界和类型上下文。此外,为了更好地利用实体交互,我们设计了一种有效的实体级协调机制,用于模拟实体-实体和意图-实体关系中的交互。在五个数据集上的实验证明了我们的 ELSF 的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信