A Cloud Motion Estimation Method Based on Cloud Image Depth Feature Matching

Lianglin Zou;Ping Tang;Yisen Niu;Zixuan Yan;Xilong Lin;Jifeng Song;Qian Wang
{"title":"A Cloud Motion Estimation Method Based on Cloud Image Depth Feature Matching","authors":"Lianglin Zou;Ping Tang;Yisen Niu;Zixuan Yan;Xilong Lin;Jifeng Song;Qian Wang","doi":"10.1109/LGRS.2024.3491094","DOIUrl":null,"url":null,"abstract":"The movement of clouds directly influences fluctuations in solar radiation. Therefore, cloud motion vector (CMV) estimation techniques are widely applied in sequential cloud images to predict solar radiation and study other meteorologically related fields. However, traditional block matching, optical flow, and feature point methods struggle to accurately capture the deformation, multilayered, and mixed cloud types’ motion due to the lack of deep semantic understanding of cloud images. Additionally, without cloud-motion-labeled, deep learning tools such as CNNs are limited in their utility for motion assessment. Therefore, this letter proposes a method of cloud image depth feature matching to assess the CMV in time series, including image enhancement, self-supervised feature extraction, feature matching, feature fusion, and spatiotemporal filtering. Experimental results demonstrate a significant improvement in accuracy compared to traditional CMV estimation techniques, with higher robustness observed across various complex cloud scenarios.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742388/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The movement of clouds directly influences fluctuations in solar radiation. Therefore, cloud motion vector (CMV) estimation techniques are widely applied in sequential cloud images to predict solar radiation and study other meteorologically related fields. However, traditional block matching, optical flow, and feature point methods struggle to accurately capture the deformation, multilayered, and mixed cloud types’ motion due to the lack of deep semantic understanding of cloud images. Additionally, without cloud-motion-labeled, deep learning tools such as CNNs are limited in their utility for motion assessment. Therefore, this letter proposes a method of cloud image depth feature matching to assess the CMV in time series, including image enhancement, self-supervised feature extraction, feature matching, feature fusion, and spatiotemporal filtering. Experimental results demonstrate a significant improvement in accuracy compared to traditional CMV estimation techniques, with higher robustness observed across various complex cloud scenarios.
基于云图像深度特征匹配的云运动估计方法
云的运动直接影响太阳辐射的波动。因此,云运动矢量(CMV)估计技术被广泛应用于连续云图像中,以预测太阳辐射和研究其他气象相关领域。然而,由于缺乏对云图像的深入语义理解,传统的块匹配、光流和特征点方法难以准确捕捉变形、多层和混合云类型的运动。此外,如果没有云运动标签,深度学习工具(如 CNN)在运动评估方面的实用性也会受到限制。因此,本文提出了一种云图像深度特征匹配方法来评估时间序列中的 CMV,包括图像增强、自监督特征提取、特征匹配、特征融合和时空滤波。实验结果表明,与传统的 CMV 估算技术相比,该方法的准确性有了显著提高,而且在各种复杂的云场景中都具有更高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信