{"title":"Efficiently Tackling Million-Dimensional Multiobjective Problems: A Direction Sampling and Fine-Tuning Approach","authors":"Haokai Hong;Min Jiang;Qiuzhen Lin;Kay Chen Tan","doi":"10.1109/TETCI.2024.3386866","DOIUrl":null,"url":null,"abstract":"We define very large-scale multiobjective optimization problems as optimizing multiple objectives (VLSMOPs) with more than 100,000 decision variables. These problems hold substantial significance, given the ubiquity of real-world scenarios necessitating the optimization of hundreds of thousands, if not millions, of variables. However, the larger dimension in VLSMOPs intensifies the curse of dimensionality and poses significant challenges for existing large-scale evolutionary multiobjective algorithms, rendering them more difficult to solve within the constraints of practical computing resources. To overcome this issue, we propose a novel approach called the very large-scale multiobjective optimization framework (VMOF). The method efficiently samples general yet suitable evolutionary directions in the very large-scale space and subsequently fine-tunes these directions to locate the Pareto-optimal solutions. To sample the most suitable evolutionary directions for different solutions, Thompson sampling is adopted for its effectiveness in recommending from a very large number of items within limited historical evaluations. Furthermore, a technique is designed for fine-tuning directions specific to tracking Pareto-optimal solutions. To understand the designed framework, we present our analysis of the framework and then evaluate VMOF using widely recognized benchmarks and real-world problems spanning dimensions from 100 to 1,000,000. Experimental results demonstrate that our method exhibits superior performance not only on LSMOPs but also on VLSMOPs when compared to existing algorithms.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"4197-4209"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10504923/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We define very large-scale multiobjective optimization problems as optimizing multiple objectives (VLSMOPs) with more than 100,000 decision variables. These problems hold substantial significance, given the ubiquity of real-world scenarios necessitating the optimization of hundreds of thousands, if not millions, of variables. However, the larger dimension in VLSMOPs intensifies the curse of dimensionality and poses significant challenges for existing large-scale evolutionary multiobjective algorithms, rendering them more difficult to solve within the constraints of practical computing resources. To overcome this issue, we propose a novel approach called the very large-scale multiobjective optimization framework (VMOF). The method efficiently samples general yet suitable evolutionary directions in the very large-scale space and subsequently fine-tunes these directions to locate the Pareto-optimal solutions. To sample the most suitable evolutionary directions for different solutions, Thompson sampling is adopted for its effectiveness in recommending from a very large number of items within limited historical evaluations. Furthermore, a technique is designed for fine-tuning directions specific to tracking Pareto-optimal solutions. To understand the designed framework, we present our analysis of the framework and then evaluate VMOF using widely recognized benchmarks and real-world problems spanning dimensions from 100 to 1,000,000. Experimental results demonstrate that our method exhibits superior performance not only on LSMOPs but also on VLSMOPs when compared to existing algorithms.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.