{"title":"Discriminative Multi-View Fusion via Adaptive Regression","authors":"Chenglong Zhang;Xinjie Zhu;Zidong Wang;Yan Zhong;Weiguo Sheng;Weiping Ding;Bingbing Jiang","doi":"10.1109/TETCI.2024.3375342","DOIUrl":null,"url":null,"abstract":"Data fusion has become an important task in multi-view learning. Previous methods suffer from the insufficient data fusion due to the following issues: (i) Several methods ignore the correlation and distinction among views and directly concatenate the features from different views; (ii) They involve intractable parameters to balance different views, degenerating the applicability of models; (iii) A fixed label matrix is used to guide feature fusion, overlooking the distances between different classes (i.e., inter-class distance) or within the same class (i.e., intra-class compactness). To overcome these problems, a novel fusion model is proposed to discriminate different views and samples in an adaptive manner, so as to effectively reduce the adverse impacts of low-quality views and outliers. In contrast to existing methods, a flexible regression target is designed to take full advantage of the label information of data, such that both the inter-class distance and the intra-class compactness are preserved. Benefiting from this, a compact and discriminative representation of multiple views is learned to maintain the consistent and complementary information of diverse views. Extensive experiments validate the effectiveness and the superiority of our proposed model.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"3821-3833"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10477592/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Data fusion has become an important task in multi-view learning. Previous methods suffer from the insufficient data fusion due to the following issues: (i) Several methods ignore the correlation and distinction among views and directly concatenate the features from different views; (ii) They involve intractable parameters to balance different views, degenerating the applicability of models; (iii) A fixed label matrix is used to guide feature fusion, overlooking the distances between different classes (i.e., inter-class distance) or within the same class (i.e., intra-class compactness). To overcome these problems, a novel fusion model is proposed to discriminate different views and samples in an adaptive manner, so as to effectively reduce the adverse impacts of low-quality views and outliers. In contrast to existing methods, a flexible regression target is designed to take full advantage of the label information of data, such that both the inter-class distance and the intra-class compactness are preserved. Benefiting from this, a compact and discriminative representation of multiple views is learned to maintain the consistent and complementary information of diverse views. Extensive experiments validate the effectiveness and the superiority of our proposed model.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.