Speech-Driven Gesture Generation Using Transformer-Based Denoising Diffusion Probabilistic Models

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bowen Wu;Chaoran Liu;Carlos Toshinori Ishi;Hiroshi Ishiguro
{"title":"Speech-Driven Gesture Generation Using Transformer-Based Denoising Diffusion Probabilistic Models","authors":"Bowen Wu;Chaoran Liu;Carlos Toshinori Ishi;Hiroshi Ishiguro","doi":"10.1109/THMS.2024.3456085","DOIUrl":null,"url":null,"abstract":"While it is crucial for human-like avatars to perform co-speech gestures, existing approaches struggle to generate natural and realistic movements. In the present study, a novel transformer-based denoising diffusion model is proposed to generate co-speech gestures. Moreover, we introduce a practical sampling trick for diffusion models to maintain the continuity between the generated motion segments while improving the within-segment motion likelihood and naturalness. Our model can be used for online generation since it generates gestures for a short segment of speech, e.g., 2 s. We evaluate our model on two large-scale speech-gesture datasets with finger movements using objective measurements and a user study, showing that our model outperforms all other baselines. Our user study is based on the Metahuman platform in the Unreal Engine, a popular tool for creating human-like avatars and motions.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"54 6","pages":"733-742"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10712170/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

While it is crucial for human-like avatars to perform co-speech gestures, existing approaches struggle to generate natural and realistic movements. In the present study, a novel transformer-based denoising diffusion model is proposed to generate co-speech gestures. Moreover, we introduce a practical sampling trick for diffusion models to maintain the continuity between the generated motion segments while improving the within-segment motion likelihood and naturalness. Our model can be used for online generation since it generates gestures for a short segment of speech, e.g., 2 s. We evaluate our model on two large-scale speech-gesture datasets with finger movements using objective measurements and a user study, showing that our model outperforms all other baselines. Our user study is based on the Metahuman platform in the Unreal Engine, a popular tool for creating human-like avatars and motions.
使用基于变压器的去噪扩散概率模型生成语音手势
对于类人化身来说,做出协同语音手势至关重要,但现有方法难以生成自然逼真的动作。在本研究中,我们提出了一种新颖的基于变换器的去噪扩散模型来生成协同语音手势。此外,我们还为扩散模型引入了实用的采样技巧,以保持生成的运动片段之间的连续性,同时提高片段内运动的可能性和自然度。我们利用客观测量和用户研究在两个大规模语音手势数据集上对我们的模型进行了评估,结果表明我们的模型优于所有其他基线模型。我们的用户研究基于虚幻引擎中的 Metahuman 平台,这是一种用于创建类人化身和动作的流行工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信