{"title":"Multilevel Joint Association Networks for Diverse Human Motion Prediction","authors":"Linwei Chen;Wanshu Fan;Xu Gui;Yaqing Hou;Xin Yang;Qiang Zhang;Xiaopeng Wei;Dongsheng Zhou","doi":"10.1109/TETCI.2024.3386840","DOIUrl":null,"url":null,"abstract":"Predicting accurate and diverse human motion presents a challenging task due to the complexity and uncertainty of future human motion. Existing works have explored sampling techniques and body modeling approaches to enhance diversity while maintaining the accuracy of human motion prediction. However, most of them often fall short in capturing the hierarchical features of the correlations between joints. To address these limitations, we propose in this paper the Multilevel Joint Association Network, a novel deep generative model designed to achieve both diverse and controllable motion prediction by adjusting the manner in which the human body is modeled. Our model incorporates two Graph Convolution Networks (GCNs) to enhance the extraction of features, resulting in more accurate future motion samples. Furthermore, we employ a multi-level Transformer generator that effectively capture the contact information between human joints and the personality characteristics of human joints, enabling the generated future motion samples with high diversity and low error. Extensive experimental results on two challenging datasets Human3.6 M and HumanEva-I, indicate that the proposed method achieves state-of-the-art performance in terms of both diversity and accuracy.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"4165-4178"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10505806/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting accurate and diverse human motion presents a challenging task due to the complexity and uncertainty of future human motion. Existing works have explored sampling techniques and body modeling approaches to enhance diversity while maintaining the accuracy of human motion prediction. However, most of them often fall short in capturing the hierarchical features of the correlations between joints. To address these limitations, we propose in this paper the Multilevel Joint Association Network, a novel deep generative model designed to achieve both diverse and controllable motion prediction by adjusting the manner in which the human body is modeled. Our model incorporates two Graph Convolution Networks (GCNs) to enhance the extraction of features, resulting in more accurate future motion samples. Furthermore, we employ a multi-level Transformer generator that effectively capture the contact information between human joints and the personality characteristics of human joints, enabling the generated future motion samples with high diversity and low error. Extensive experimental results on two challenging datasets Human3.6 M and HumanEva-I, indicate that the proposed method achieves state-of-the-art performance in terms of both diversity and accuracy.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.