UV/visible absorption maxima prediction of water-soluble organic compounds and generation of library of new organic compounds.

Aftab Farrukh, Ibrahim A Shaaban, Mohammed A Assiri, Mudassir Hussain Tahir, Zeinhom M El-Bahy
{"title":"UV/visible absorption maxima prediction of water-soluble organic compounds and generation of library of new organic compounds.","authors":"Aftab Farrukh, Ibrahim A Shaaban, Mohammed A Assiri, Mudassir Hussain Tahir, Zeinhom M El-Bahy","doi":"10.1016/j.saa.2024.125453","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, UV/visible absorption maxima of organic compounds are predicted with the help of machine learning (ML). Four ML models are evaluated, the gradient boosting model has performed best. We also analyzed feature importance. Using Python-based tools, we generated and visualized a new set of 5,000 organic compounds. These compounds were screened based on their predicted UV/visible absorption maxima, selecting those with red-shifted absorption. The assessment of synthetic accessibility indicated that most of the chosen compounds are relatively easy to synthesize.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"328 ","pages":"125453"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, UV/visible absorption maxima of organic compounds are predicted with the help of machine learning (ML). Four ML models are evaluated, the gradient boosting model has performed best. We also analyzed feature importance. Using Python-based tools, we generated and visualized a new set of 5,000 organic compounds. These compounds were screened based on their predicted UV/visible absorption maxima, selecting those with red-shifted absorption. The assessment of synthetic accessibility indicated that most of the chosen compounds are relatively easy to synthesize.

预测水溶性有机化合物的紫外/可见吸收最大值并生成新的有机化合物库。
在这项研究中,利用机器学习(ML)预测了有机化合物的紫外/可见吸收最大值。我们评估了四种 ML 模型,其中梯度提升模型表现最佳。我们还分析了特征的重要性。利用基于 Python 的工具,我们生成并可视化了一组新的 5,000 种有机化合物。我们根据预测的紫外/可见吸收最大值对这些化合物进行了筛选,选出了具有红移吸收的化合物。对合成可得性的评估表明,大多数被选中的化合物都比较容易合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信