Photon-Counting CT in Cancer Radiotherapy: Technological Advances and Clinical Benefits.

ArXiv Pub Date : 2024-12-04
Keyur D Shah, Jun Zhou, Justin Roper, Anees Dhabaan, Hania Al-Hallaq, Amir Pourmorteza, Xiaofeng Yang
{"title":"Photon-Counting CT in Cancer Radiotherapy: Technological Advances and Clinical Benefits.","authors":"Keyur D Shah, Jun Zhou, Justin Roper, Anees Dhabaan, Hania Al-Hallaq, Amir Pourmorteza, Xiaofeng Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Photon-counting computed tomography (PCCT) marks a significant advancement over conventional energy-integrating detector (EID) CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, metal artifact reduction (MAR) and quantitative imaging capabilities optimize workflows, enabling adaptive radiotherapy and radiomics-driven personalized treatment. Emerging clinical applications in brachytherapy and radiopharmaceutical therapy (RPT) show promising outcomes, although challenges like high costs and limited software integration remain. With advancements in artificial intelligence (AI) and dedicated radiotherapy packages, PCCT is poised to transform precision, safety, and efficacy in cancer radiotherapy, marking it as a pivotal technology for future clinical practice.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photon-counting computed tomography (PCCT) marks a significant advancement over conventional energy-integrating detector (EID) CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, metal artifact reduction (MAR) and quantitative imaging capabilities optimize workflows, enabling adaptive radiotherapy and radiomics-driven personalized treatment. Emerging clinical applications in brachytherapy and radiopharmaceutical therapy (RPT) show promising outcomes, although challenges like high costs and limited software integration remain. With advancements in artificial intelligence (AI) and dedicated radiotherapy packages, PCCT is poised to transform precision, safety, and efficacy in cancer radiotherapy, marking it as a pivotal technology for future clinical practice.

癌症放疗中的光子计数 CT:技术进步与临床效益。
与传统的能量积分探测器(EID)CT 系统相比,光子计数计算机断层扫描(PCCT)是一项重大进步。本综述重点介绍了 PCCT 优越的空间和对比分辨率、降低的辐射剂量和多能量成像功能,这些功能可解决放疗中的关键难题,如准确划分肿瘤、精确计算剂量和治疗反应监测。PCCT 提高了解剖学清晰度,增强了肿瘤靶向性,同时最大限度地减少了对周围健康组织的损伤。此外,金属伪影减少(MAR)和定量成像功能优化了工作流程,实现了适应性放疗和放射组学驱动的个性化治疗。近距离放射治疗和放射性药物治疗(RPT)方面的新兴临床应用显示出良好的效果,但仍存在高成本和软件集成度有限等挑战。随着人工智能(AI)和专用放疗软件包的进步,PCCT 将改变癌症放疗的精确性、安全性和疗效,成为未来临床实践的关键技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信