Shaoyan Pan, Vanessa Su, Junbo Peng, Junyuan Li, Yuan Gao, Chih-Wei Chang, Tonghe Wang, Zhen Tian, Xiaofeng Yang
{"title":"Patient-Specific CBCT Synthesis for Real-time Tumor Tracking in Surface-guided Radiotherapy.","authors":"Shaoyan Pan, Vanessa Su, Junbo Peng, Junyuan Li, Yuan Gao, Chih-Wei Chang, Tonghe Wang, Zhen Tian, Xiaofeng Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.