GENERATIVE FORECASTING OF BRAIN ACTIVITY ENHANCES ALZHEIMER'S CLASSIFICATION AND INTERPRETATION.

ArXiv Pub Date : 2024-10-30
Yutong Gao, Vince D Calhoun, Robyn L Miller
{"title":"GENERATIVE FORECASTING OF BRAIN ACTIVITY ENHANCES ALZHEIMER'S CLASSIFICATION AND INTERPRETATION.","authors":"Yutong Gao, Vince D Calhoun, Robyn L Miller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between cognition and intrinsic brain activity through purely data-driven approaches remains a significant challenge in neuroscience. Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor regional neural activity, providing a rich and complex spatiotemporal data structure. Deep learning has shown promise in capturing these intricate representations. However, the limited availability of large datasets, especially for disease-specific groups such as Alzheimer's Disease (AD), constrains the generalizability of deep learning models. In this study, we focus on multivariate time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation, using both a conventional LSTM-based model and the novel Transformer-based BrainLM model. We assess their utility in AD classification, demonstrating how generative forecasting enhances classification performance. Post-hoc interpretation of BrainLM reveals class-specific brain network sensitivities associated with AD.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationship between cognition and intrinsic brain activity through purely data-driven approaches remains a significant challenge in neuroscience. Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor regional neural activity, providing a rich and complex spatiotemporal data structure. Deep learning has shown promise in capturing these intricate representations. However, the limited availability of large datasets, especially for disease-specific groups such as Alzheimer's Disease (AD), constrains the generalizability of deep learning models. In this study, we focus on multivariate time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation, using both a conventional LSTM-based model and the novel Transformer-based BrainLM model. We assess their utility in AD classification, demonstrating how generative forecasting enhances classification performance. Post-hoc interpretation of BrainLM reveals class-specific brain network sensitivities associated with AD.

大脑活动的生成预测增强了阿尔茨海默氏症的分类和解释能力。
通过纯粹的数据驱动方法来理解认知与大脑内在活动之间的关系,仍然是神经科学领域的一项重大挑战。静息态功能磁共振成像(rs-fMRI)提供了一种监测区域神经活动的无创方法,提供了丰富而复杂的时空数据结构。深度学习已显示出捕捉这些复杂表征的前景。然而,大型数据集的可用性有限,尤其是针对阿尔茨海默病(AD)等特定疾病群体的数据集,限制了深度学习模型的普适性。在本研究中,我们使用基于 LSTM 的传统模型和基于 Transformer 的新型 BrainLM 模型,将重点放在对源自 rs-fMRI 的独立分量网络的多变量时间序列预测上,以此作为一种数据增强形式。我们评估了它们在 AD 分类中的实用性,展示了生成预测是如何提高分类性能的。对BrainLM的事后解释揭示了与AD相关的特定类别脑网络敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信