{"title":"SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition.","authors":"Junxi Feng, Mengtao Sun, Cong Liu, Weiwei Zhang, Changmou Xu, Jieqiong Wang, Guangshun Wang, Shibiao Wan","doi":"10.1093/bfgp/elae046","DOIUrl":null,"url":null,"abstract":"<p><p>It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"879-890"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.