{"title":"Phase synchronization analysis of EEG functional connectivity in Parkinson’s disease","authors":"Karthikeyan Rajagopal , Nafise Naseri , Fatemeh Parastesh , Farnaz Ghassemi , Sajad Jafari","doi":"10.1016/j.jtbi.2024.111997","DOIUrl":null,"url":null,"abstract":"<div><div>There is a growing need for research on Parkinson’s disease (PD), a neurological condition that often affects the elderly. By examining brain network connectivity, researchers are able to discover how different brain regions interact during various cognitive and behavioral tasks. They can also understand how changes in nonlinear connections may be linked to neurological and mental illnesses. In this paper, the synchrony levels of 59 EEG channels from 26 Parkinson’s patients and 13 healthy subjects is examined by utilizing Phase-Lag Index (PLI) during a motor task and resting-state conditions. Examining different EEG frequency bands shows that whole-brain synchronization in the delta band is significantly lower in PD patients compared to healthy subjects during the task. PD patients also exhibit a lower clustering coefficient and a higher shortest path length in this band during the task, which shows the higher small-worldness in Parkinson’s patients compared to healthy individuals. Moreover, the global efficiency in the delta band is significantly reduced in PD patients during the task. An analysis of local efficiency shows that PD and control groups differ in 57 channels. These results reveal that Parkinson’s patients appear to have considerable pathological abnormalities in their delta band connectivity and its characteristic features.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"598 ","pages":"Article 111997"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002820","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing need for research on Parkinson’s disease (PD), a neurological condition that often affects the elderly. By examining brain network connectivity, researchers are able to discover how different brain regions interact during various cognitive and behavioral tasks. They can also understand how changes in nonlinear connections may be linked to neurological and mental illnesses. In this paper, the synchrony levels of 59 EEG channels from 26 Parkinson’s patients and 13 healthy subjects is examined by utilizing Phase-Lag Index (PLI) during a motor task and resting-state conditions. Examining different EEG frequency bands shows that whole-brain synchronization in the delta band is significantly lower in PD patients compared to healthy subjects during the task. PD patients also exhibit a lower clustering coefficient and a higher shortest path length in this band during the task, which shows the higher small-worldness in Parkinson’s patients compared to healthy individuals. Moreover, the global efficiency in the delta band is significantly reduced in PD patients during the task. An analysis of local efficiency shows that PD and control groups differ in 57 channels. These results reveal that Parkinson’s patients appear to have considerable pathological abnormalities in their delta band connectivity and its characteristic features.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.