Christopher J. Banks , Ewan Colman , Anthony J. Wood , Thomas Doherty , Rowland R. Kao
{"title":"Modelling plausible scenarios for the Omicron SARS-CoV-2 variant from early-stage surveillance","authors":"Christopher J. Banks , Ewan Colman , Anthony J. Wood , Thomas Doherty , Rowland R. Kao","doi":"10.1016/j.epidem.2024.100800","DOIUrl":null,"url":null,"abstract":"<div><div>We used a spatially explicit agent-based model of SARS-CoV-2 transmission combined with spatially fine-grained COVID-19 observation data from Public Health Scotland to investigate the initial rise of the Omicron (BA.1) variant of concern. We evaluated plausible scenarios for transmission rate advantage and vaccine immune escape relative to the Delta variant based on the data that would have been available at that time. We also explored possible outcomes of different levels of imposed non-pharmaceutical intervention. The initial results of these scenarios were used to inform the Scottish Government in the early outbreak stages of the Omicron variant.</div><div>Using the model with parameters fit over the Delta variant epidemic, some initial assumptions about Omicron transmission rate advantage and vaccine escape, and a simple growth rate fitting procedure, we were able to capture the initial outbreak dynamics for Omicron. We found that the modelled dynamics hold up to retrospective scrutiny. The modelled imposition of extra non-pharmaceutical interventions planned by the Scottish Government at the time would likely have little effect in light of the transmission rate advantage held by the Omicron variant and the fact that the planned interventions would have occurred too late in the outbreak’s trajectory. Finally, we found that any assumptions made about the projected distribution of vaccines in the model population had little bearing on the outcome, in terms of outbreak size and timing. Instead, it was the landscape of prior immunity that was most important.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"49 ","pages":"Article 100800"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436524000616","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
We used a spatially explicit agent-based model of SARS-CoV-2 transmission combined with spatially fine-grained COVID-19 observation data from Public Health Scotland to investigate the initial rise of the Omicron (BA.1) variant of concern. We evaluated plausible scenarios for transmission rate advantage and vaccine immune escape relative to the Delta variant based on the data that would have been available at that time. We also explored possible outcomes of different levels of imposed non-pharmaceutical intervention. The initial results of these scenarios were used to inform the Scottish Government in the early outbreak stages of the Omicron variant.
Using the model with parameters fit over the Delta variant epidemic, some initial assumptions about Omicron transmission rate advantage and vaccine escape, and a simple growth rate fitting procedure, we were able to capture the initial outbreak dynamics for Omicron. We found that the modelled dynamics hold up to retrospective scrutiny. The modelled imposition of extra non-pharmaceutical interventions planned by the Scottish Government at the time would likely have little effect in light of the transmission rate advantage held by the Omicron variant and the fact that the planned interventions would have occurred too late in the outbreak’s trajectory. Finally, we found that any assumptions made about the projected distribution of vaccines in the model population had little bearing on the outcome, in terms of outbreak size and timing. Instead, it was the landscape of prior immunity that was most important.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.