Improving drug-target interaction prediction through dual-modality fusion with InteractNet.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Baozhong Zhu, Runhua Zhang, Tengsheng Jiang, Zhiming Cui, Jing Chen, Hongjie Wu
{"title":"Improving drug-target interaction prediction through dual-modality fusion with InteractNet.","authors":"Baozhong Zhu, Runhua Zhang, Tengsheng Jiang, Zhiming Cui, Jing Chen, Hongjie Wu","doi":"10.1142/S0219720024500240","DOIUrl":null,"url":null,"abstract":"<p><p>In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end, we propose a new deep learning framework that combines the structural information and sequence features of proteins to provide comprehensive feature representation through bimodal fusion. This framework not only integrates the topological adaptive graph convolutional network and multi-head attention mechanism, but also introduces a self-masked attention mechanism to ensure that each protein binding site can focus on its own unique features and its interaction with the ligand. Experimental results on multiple public datasets show that our method significantly outperforms traditional machine learning and graph neural network methods in predictive performance. In addition, our method can effectively identify and explain key molecular interactions, providing new insights into understanding the complex relationship between drugs and targets.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"22 5","pages":"2450024"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500240","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end, we propose a new deep learning framework that combines the structural information and sequence features of proteins to provide comprehensive feature representation through bimodal fusion. This framework not only integrates the topological adaptive graph convolutional network and multi-head attention mechanism, but also introduces a self-masked attention mechanism to ensure that each protein binding site can focus on its own unique features and its interaction with the ligand. Experimental results on multiple public datasets show that our method significantly outperforms traditional machine learning and graph neural network methods in predictive performance. In addition, our method can effectively identify and explain key molecular interactions, providing new insights into understanding the complex relationship between drugs and targets.

通过 InteractNet 的双模态融合改进药物-靶点相互作用预测。
在药物发现过程中,准确预测药物与靶点的相互作用对于加速新药开发至关重要。然而,现有方法在处理复杂的生物分子相互作用时仍面临许多挑战。为此,我们提出了一种新的深度学习框架,它结合了蛋白质的结构信息和序列特征,通过双模融合提供全面的特征表示。该框架不仅整合了拓扑自适应图卷积网络和多头注意力机制,还引入了自屏蔽注意力机制,以确保每个蛋白质结合位点都能关注自身的独特特征及其与配体的相互作用。在多个公开数据集上的实验结果表明,我们的方法在预测性能上明显优于传统的机器学习和图神经网络方法。此外,我们的方法还能有效识别和解释关键的分子相互作用,为理解药物与靶点之间的复杂关系提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信