Identification of Individuals With Hereditary Cancer Risk Through Multiple Data Sources: A Population-Based Method Using the GARDE Platform and The Utah Population Database.
Guilherme Del Fiol, Michael J Madsen, Richard L Bradshaw, Michael G Newman, Kimberly A Kaphingst, Sean V Tavtigian, Nicola J Camp
{"title":"Identification of Individuals With Hereditary Cancer Risk Through Multiple Data Sources: A Population-Based Method Using the GARDE Platform and The Utah Population Database.","authors":"Guilherme Del Fiol, Michael J Madsen, Richard L Bradshaw, Michael G Newman, Kimberly A Kaphingst, Sean V Tavtigian, Nicola J Camp","doi":"10.1200/CCI-24-00142","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The GARDE platform uses family history reported in the electronic health record (EHR) to systematically identify eligible patients for genetic testing for hereditary cancer syndromes. The goal of this study was to evaluate the change in effectiveness of GARDE to identify eligible individuals when more comprehensive family history data are provided, thus quantifying the impact of underdocumentation.</p><p><strong>Methods: </strong>A cohort of 133,764 patients at the University of Utah Health was analyzed with GARDE comparing identification rates using EHR data versus EHR plus data from a statewide population database, the Utah Population Database (UPDB).</p><p><strong>Results: </strong>Compared with EHR alone, EHR + UPDB increased the rate of individuals eligible for genetic testing from 4.1% to 9.2%. In the 44,692 individuals with the most comprehensive family history, eligibility more than quadrupled from 4.6% (EHR alone) to 19.3% (EHR + UPDB). The increase was significant across all demographics, but disparities still remained for historically marginalized minorities (9.2%-13.9% in non-White races compared with 19.7% in White races).</p><p><strong>Conclusion: </strong>Augmenting EHR data with family history data from the UPDB substantially improved the detection of individuals eligible for genetic testing of hereditary cancer syndromes in all subgroups. This underscores the importance of improving methods for acquiring family history, in person or in silico. However, these increases did not ameliorate disparities. Continuous disparities are unlikely to be explained by incomplete family history alone and may also be because susceptibility genes, risk variants, and screening guidelines were discovered and developed largely in White races. Addressing disparities will require intentional data collection of family history in historically marginalized minorities and the promotion of genetic and risk assessment studies in more diverse populations to ensure equity and health care.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400142"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The GARDE platform uses family history reported in the electronic health record (EHR) to systematically identify eligible patients for genetic testing for hereditary cancer syndromes. The goal of this study was to evaluate the change in effectiveness of GARDE to identify eligible individuals when more comprehensive family history data are provided, thus quantifying the impact of underdocumentation.
Methods: A cohort of 133,764 patients at the University of Utah Health was analyzed with GARDE comparing identification rates using EHR data versus EHR plus data from a statewide population database, the Utah Population Database (UPDB).
Results: Compared with EHR alone, EHR + UPDB increased the rate of individuals eligible for genetic testing from 4.1% to 9.2%. In the 44,692 individuals with the most comprehensive family history, eligibility more than quadrupled from 4.6% (EHR alone) to 19.3% (EHR + UPDB). The increase was significant across all demographics, but disparities still remained for historically marginalized minorities (9.2%-13.9% in non-White races compared with 19.7% in White races).
Conclusion: Augmenting EHR data with family history data from the UPDB substantially improved the detection of individuals eligible for genetic testing of hereditary cancer syndromes in all subgroups. This underscores the importance of improving methods for acquiring family history, in person or in silico. However, these increases did not ameliorate disparities. Continuous disparities are unlikely to be explained by incomplete family history alone and may also be because susceptibility genes, risk variants, and screening guidelines were discovered and developed largely in White races. Addressing disparities will require intentional data collection of family history in historically marginalized minorities and the promotion of genetic and risk assessment studies in more diverse populations to ensure equity and health care.