Molecular dynamics simulations of ribosome-binding sites in theophylline-responsive riboswitch associated with improving the gene expression regulation in chloroplasts.
IF 0.9 4区 生物学Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rahim Berahmand, Masoumeh Emadpour, Mokhtar Jalali Javaran, Kaveh Haji-Allahverdipoor, Ali Akbarabadi
{"title":"Molecular dynamics simulations of ribosome-binding sites in theophylline-responsive riboswitch associated with improving the gene expression regulation in chloroplasts.","authors":"Rahim Berahmand, Masoumeh Emadpour, Mokhtar Jalali Javaran, Kaveh Haji-Allahverdipoor, Ali Akbarabadi","doi":"10.1142/S0219720024500239","DOIUrl":null,"url":null,"abstract":"<p><p>The existence of an efficient inducible transgene expression system is a valuable tool in recombinant protein production. The synthetic theophylline-responsive riboswitch (theo.RS) can be replaced in the 5[Formula: see text] untranslated region of an mRNA and control the translation of downstream gene in chloroplasts in response to the binding with a ligand molecule, theophylline. One of the drawbacks associated with the efficiency of the theo.RS is the leak in the RS structure allowing undesired background translation when the switch is expected to be off. The purpose of this study was to detect the factors causing the leak of the theo.RS in the off mode, using molecular dynamics (MD) simulations the appropriate balancing of the simulation system, using the necessary commands, a 40[Formula: see text]ns simulation was conducted. Analysis of the solvent-accessible surface area for both ribosome-binding site (RBS) regions indicated that nucleotide 79 of the theo.RS, a guanine, had the highest surface exposure to ribosome access. These results were verified with the study of hydrogen bonding of RBS regions with the RNA structure. Therefore, redesigning the RBS regions and avoiding the unmasked nucleotide(s) in the structure may improve the tightness of theo.RS in off mode resulting in the efficient inhibition of translation.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"22 5","pages":"2450023"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500239","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The existence of an efficient inducible transgene expression system is a valuable tool in recombinant protein production. The synthetic theophylline-responsive riboswitch (theo.RS) can be replaced in the 5[Formula: see text] untranslated region of an mRNA and control the translation of downstream gene in chloroplasts in response to the binding with a ligand molecule, theophylline. One of the drawbacks associated with the efficiency of the theo.RS is the leak in the RS structure allowing undesired background translation when the switch is expected to be off. The purpose of this study was to detect the factors causing the leak of the theo.RS in the off mode, using molecular dynamics (MD) simulations the appropriate balancing of the simulation system, using the necessary commands, a 40[Formula: see text]ns simulation was conducted. Analysis of the solvent-accessible surface area for both ribosome-binding site (RBS) regions indicated that nucleotide 79 of the theo.RS, a guanine, had the highest surface exposure to ribosome access. These results were verified with the study of hydrogen bonding of RBS regions with the RNA structure. Therefore, redesigning the RBS regions and avoiding the unmasked nucleotide(s) in the structure may improve the tightness of theo.RS in off mode resulting in the efficient inhibition of translation.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.