Expression, purification, and activation of one key enzyme in anaerobic CO2 fixation: Carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans.
4区 生物学Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Expression, purification, and activation of one key enzyme in anaerobic CO<sub>2</sub> fixation: Carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans.","authors":"Kareem Aboulhosn, Stephen Wiley Ragsdale","doi":"10.1016/bs.mie.2024.10.016","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change due to anthropomorphic emissions will increase global temperature by at least 1.5 °C by the year 2030. One strategy to reduce the severity of the effects of climate change is to sequester carbon dioxide via natural biochemical cycles. Carbon monoxide dehydrogenase (CODH) has the remarkable ability to catalyze the reversible reduction of CO<sub>2</sub> to CO without an overpotential and without reducing protons. It also is a key enzyme in the Wood-Ljungdahl pathway (WLP), which is the only known anaerobic carbon fixation pathway and fixes 10 % of carbon on earth every year. Characterization of this pathway is crucial because it may enable tools to mitigate climate change by using CO<sub>2</sub> to produce biofuels, chemical feedstocks, and polymers. In the WLP, CODH associates with Acetyl-Coenzyme A synthase (ACS), which catalyzes the condensation of CO from CODH, a methyl group from a B<sub>12</sub>-dependent methyltransferase, and CoA to form acetyl-CoA. In this complex, CO is shuttled through a 138 Å gas tunnel between the two enzymes. One valuable model for studying the CODH component of CODH/ACS is CODH-II from Carboxydothermus hydrogenoformans because it is stand-alone and is conducive to recombinant expression. Here we describe a detailed protocol for producing high-activity CODH-II in E. coli.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"708 ","pages":"237-256"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.10.016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change due to anthropomorphic emissions will increase global temperature by at least 1.5 °C by the year 2030. One strategy to reduce the severity of the effects of climate change is to sequester carbon dioxide via natural biochemical cycles. Carbon monoxide dehydrogenase (CODH) has the remarkable ability to catalyze the reversible reduction of CO2 to CO without an overpotential and without reducing protons. It also is a key enzyme in the Wood-Ljungdahl pathway (WLP), which is the only known anaerobic carbon fixation pathway and fixes 10 % of carbon on earth every year. Characterization of this pathway is crucial because it may enable tools to mitigate climate change by using CO2 to produce biofuels, chemical feedstocks, and polymers. In the WLP, CODH associates with Acetyl-Coenzyme A synthase (ACS), which catalyzes the condensation of CO from CODH, a methyl group from a B12-dependent methyltransferase, and CoA to form acetyl-CoA. In this complex, CO is shuttled through a 138 Å gas tunnel between the two enzymes. One valuable model for studying the CODH component of CODH/ACS is CODH-II from Carboxydothermus hydrogenoformans because it is stand-alone and is conducive to recombinant expression. Here we describe a detailed protocol for producing high-activity CODH-II in E. coli.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.