Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder.

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Journal of Biomedical Informatics Pub Date : 2024-12-01 Epub Date: 2024-11-19 DOI:10.1016/j.jbi.2024.104751
Innocent Tatchum Sado, Louis Fippo Fitime, Geraud Fokou Pelap, Claude Tinku, Gaelle Mireille Meudje, Thomas Bouetou Bouetou
{"title":"Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder.","authors":"Innocent Tatchum Sado, Louis Fippo Fitime, Geraud Fokou Pelap, Claude Tinku, Gaelle Mireille Meudje, Thomas Bouetou Bouetou","doi":"10.1016/j.jbi.2024.104751","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a disease that causes many deaths worldwide. The treatment of cancer is first and foremost a matter of detection, a treatment that is most effective when the disease is detected at an early stage. With the evolution of technology, several computer-aided diagnosis tools have been developed around cancer; several image-based cancer detection methods have been developed too. However, cancer detection faces many difficulties related to early detection which is crucial for patient survival rate. To detect cancer early, scientists have been using transcriptomic data. However, this presents some challenges such as unlabeled data, a large amount of data, and image-based techniques that only focus on one type of cancer. The purpose of this work is to develop a deep learning model that can effectively detect as soon as possible, specifically in the early stages, any type of cancer as an anomaly in transcriptomic data. This model must have the ability to act independently and not be restricted to any specific type of cancer. To achieve this goal, we modeled a deep neural network (a Variational Autoencoder) and then defined an algorithm for detecting anomalies in the output of the Variational Autoencoder. The Variational Autoencoder consists of an encoder and a decoder with a hidden layer. With the TCGA and GTEx data, we were able to train the model for six types of cancer using the Adam optimizer with decay learning for training, and a two-component loss function. As a result, we obtained the lowest value of accuracy 0.950, and the lowest value of recall 0.830. This research leads us to the design of a deep learning model for the detection of cancer as an anomaly in transcriptomic data.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104751"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2024.104751","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a disease that causes many deaths worldwide. The treatment of cancer is first and foremost a matter of detection, a treatment that is most effective when the disease is detected at an early stage. With the evolution of technology, several computer-aided diagnosis tools have been developed around cancer; several image-based cancer detection methods have been developed too. However, cancer detection faces many difficulties related to early detection which is crucial for patient survival rate. To detect cancer early, scientists have been using transcriptomic data. However, this presents some challenges such as unlabeled data, a large amount of data, and image-based techniques that only focus on one type of cancer. The purpose of this work is to develop a deep learning model that can effectively detect as soon as possible, specifically in the early stages, any type of cancer as an anomaly in transcriptomic data. This model must have the ability to act independently and not be restricted to any specific type of cancer. To achieve this goal, we modeled a deep neural network (a Variational Autoencoder) and then defined an algorithm for detecting anomalies in the output of the Variational Autoencoder. The Variational Autoencoder consists of an encoder and a decoder with a hidden layer. With the TCGA and GTEx data, we were able to train the model for six types of cancer using the Adam optimizer with decay learning for training, and a two-component loss function. As a result, we obtained the lowest value of accuracy 0.950, and the lowest value of recall 0.830. This research leads us to the design of a deep learning model for the detection of cancer as an anomaly in transcriptomic data.

通过深度学习进行早期多癌检测:使用变异自动编码器的异常检测方法。
癌症是一种导致全球许多人死亡的疾病。癌症的治疗首先要靠检测,只有在早期发现癌症,治疗效果才会最好。随着技术的发展,围绕癌症开发出了多种计算机辅助诊断工具,还开发出了多种基于图像的癌症检测方法。然而,癌症检测面临着许多与早期检测有关的困难,而早期检测对患者的存活率至关重要。为了早期检测癌症,科学家们一直在使用转录组数据。然而,这也带来了一些挑战,如无标记数据、数据量大以及基于图像的技术只关注一种类型的癌症。这项工作的目的是开发一种深度学习模型,它能尽快(特别是在早期阶段)有效检测转录组数据中任何类型癌症的异常。该模型必须具备独立行动的能力,并且不局限于任何特定类型的癌症。为了实现这一目标,我们建立了一个深度神经网络模型(变异自动编码器),然后定义了一种算法,用于检测变异自动编码器输出中的异常。变异自动编码器由一个编码器和一个带隐藏层的解码器组成。利用 TCGA 和 GTEx 数据,我们使用亚当优化器(Adam optimizer)、衰减学习训练和双分量损失函数对六种类型的癌症进行了模型训练。结果,我们获得了准确率最低值 0.950 和召回率最低值 0.830。这项研究为我们设计了一种深度学习模型,用于检测转录组数据中的癌症异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信