Anna Postovskaya, Koen Vercauteren, Pieter Meysman, Kris Laukens
{"title":"tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs.","authors":"Anna Postovskaya, Koen Vercauteren, Pieter Meysman, Kris Laukens","doi":"10.1093/bib/bbae602","DOIUrl":null,"url":null,"abstract":"<p><p>Deciphering the specificity of T-cell receptor (TCR) repertoires is crucial for monitoring adaptive immune responses and developing targeted immunotherapies and vaccines. To elucidate the specificity of previously unseen TCRs, many methods employ the BLOSUM62 matrix to find TCRs with similar amino acid (AA) sequences. However, while BLOSUM62 reflects the AA substitutions within conserved regions of proteins with similar functions, the remarkable diversity of TCRs means that both TCRs with similar and dissimilar sequences can bind the same epitope. Therefore, reliance on BLOSUM62 may bias detection towards epitope-specific TCRs with similar biochemical properties, overlooking those with more diverse AA compositions. In this study, we introduce tcrBLOSUMa and tcrBLOSUMb, specialized AA substitution matrices for CDR3 alpha and CDR3 beta TCR chains, respectively. The matrices reflect AA frequencies and variations occurring within TCRs that bind the same epitope, revealing that both CDR3 alpha and CDR3 beta display tolerance to a wide range of AA substitutions and differ noticeably from the standard BLOSUM62. By accurately aligning distant TCRs employing tcrBLOSUMb, we were able to improve clustering performance and capture a large number of epitope-specific TCRs with diverse AA compositions and physicochemical profiles overlooked by BLOSUM62. Utilizing both the general BLOSUM62 and specialized tcrBLOSUM matrices in existing computational tools will broaden the range of TCRs that can be associated with their cognate epitopes, thereby enhancing TCR repertoire analysis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deciphering the specificity of T-cell receptor (TCR) repertoires is crucial for monitoring adaptive immune responses and developing targeted immunotherapies and vaccines. To elucidate the specificity of previously unseen TCRs, many methods employ the BLOSUM62 matrix to find TCRs with similar amino acid (AA) sequences. However, while BLOSUM62 reflects the AA substitutions within conserved regions of proteins with similar functions, the remarkable diversity of TCRs means that both TCRs with similar and dissimilar sequences can bind the same epitope. Therefore, reliance on BLOSUM62 may bias detection towards epitope-specific TCRs with similar biochemical properties, overlooking those with more diverse AA compositions. In this study, we introduce tcrBLOSUMa and tcrBLOSUMb, specialized AA substitution matrices for CDR3 alpha and CDR3 beta TCR chains, respectively. The matrices reflect AA frequencies and variations occurring within TCRs that bind the same epitope, revealing that both CDR3 alpha and CDR3 beta display tolerance to a wide range of AA substitutions and differ noticeably from the standard BLOSUM62. By accurately aligning distant TCRs employing tcrBLOSUMb, we were able to improve clustering performance and capture a large number of epitope-specific TCRs with diverse AA compositions and physicochemical profiles overlooked by BLOSUM62. Utilizing both the general BLOSUM62 and specialized tcrBLOSUM matrices in existing computational tools will broaden the range of TCRs that can be associated with their cognate epitopes, thereby enhancing TCR repertoire analysis.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.