{"title":"MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics.","authors":"Yiwen Yang, Chengming Zhang, Zhaonan Liu, Kazuyuki Aihara, Chuanchao Zhang, Luonan Chen, Wu Wei","doi":"10.1093/bib/bbae608","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially Resolved Transcriptomics (SRT) serves as a cornerstone in biomedical research, revealing the heterogeneity of tissue microenvironments. Integrating multimodal data including gene expression, spatial coordinates, and morphological information poses significant challenges for accurate spatial domain identification. Herein, we present the Multi-view Contrastive Graph Autoencoder (MCGAE), a cutting-edge deep computational framework specifically designed for the intricate analysis of spatial transcriptomics (ST) data. MCGAE advances the field by creating multi-view representations from gene expression and spatial adjacency matrices. Utilizing modular modeling, contrastive graph convolutional networks, and attention mechanisms, it generates modality-specific spatial representations and integrates them into a unified embedding. This integration process is further enriched by the inclusion of morphological image features, markedly enhancing the framework's capability to process multimodal data. Applied to both simulated and real SRT datasets, MCGAE demonstrates superior performance in spatial domain detection, data denoising, trajectory inference, and 3D feature extraction, outperforming existing methods. Specifically, in colorectal cancer liver metastases, MCGAE integrates histological and gene expression data to identify tumor invasion regions and characterize cellular molecular regulation. This breakthrough extends ST analysis and offers new tools for cancer and complex disease research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae608","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially Resolved Transcriptomics (SRT) serves as a cornerstone in biomedical research, revealing the heterogeneity of tissue microenvironments. Integrating multimodal data including gene expression, spatial coordinates, and morphological information poses significant challenges for accurate spatial domain identification. Herein, we present the Multi-view Contrastive Graph Autoencoder (MCGAE), a cutting-edge deep computational framework specifically designed for the intricate analysis of spatial transcriptomics (ST) data. MCGAE advances the field by creating multi-view representations from gene expression and spatial adjacency matrices. Utilizing modular modeling, contrastive graph convolutional networks, and attention mechanisms, it generates modality-specific spatial representations and integrates them into a unified embedding. This integration process is further enriched by the inclusion of morphological image features, markedly enhancing the framework's capability to process multimodal data. Applied to both simulated and real SRT datasets, MCGAE demonstrates superior performance in spatial domain detection, data denoising, trajectory inference, and 3D feature extraction, outperforming existing methods. Specifically, in colorectal cancer liver metastases, MCGAE integrates histological and gene expression data to identify tumor invasion regions and characterize cellular molecular regulation. This breakthrough extends ST analysis and offers new tools for cancer and complex disease research.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.